
IDL Version 5.6
October, 2002 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Getting Started
with IDL

1002IDL56GS

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
The Power of IDL ... 9
Using this Manual ... 12

Chapter 2:
The IDL Development Environment ... 13
IDL’s Development Environment ... 14
Starting IDL ... 15

The IDL Interfaces .. 16
The IDL Development Environment Layout .. 17

Quitting IDL .. 20
More Information on the IDLDE .. 21

Chapter 3:
Reading and Writing Data .. 23
IDL and Reading and Writing Data .. 24
Getting Started with IDL 3

4

IDL Supported Formats ... 25
Image Formats ... 25

Scientific Data Formats ... 25
Other Formats .. 25

Importing Data from an ASCII File ... 26
Reading and Writing Binary Data .. 31

Saving a Template .. 35
Reading and Writing Images ... 36

More Information on IDL and Input/Output .. 38

Chapter 4:
2-D Plotting ... 39
IDL and 2-D Plotting ... 40

Simple Plotting ... 41
Using OPLOT .. 42

Printing a Plot .. 43
Plotting with Data Sets ... 44

Other Plotting Capabilities ... 45
Using LIVE_PLOT .. 46

More Information on 2-D Plotting ... 48

Chapter 5:
Signal Processing .. 49
IDL and Signal Processing ... 50

Creating a Data Set .. 51
Signal Processing with SMOOTH ... 54

Frequency Domain Filtering .. 55
Displaying the Results ... 58

More Information on Signal Processing .. 60

Chapter 6:
Image Processing ... 61
IDL and Image Processing ... 62
Reading an Image .. 63

Displaying an Image .. 64
Resizing an Image .. 66

Resizing a Graphics Window ... 67
Contents Getting Started with IDL

5

Contrast Enhancement ... 68
Thresholding ... 68

Scaling Pixel Values ... 71
Smoothing and Sharpening ... 74

Unsharp Masking .. 75
Sharpening Images with Differentiation ... 76

Other Image Manipulations ... 78
Rotating an Image ... 79

Extracting Profiles ... 80
Using LIVE_IMAGE .. 81

More Information on Image Processing .. 82

Chapter 7:
Surface and Contour Plotting .. 83
IDL and Surface and Contour Plotting .. 84

Reading a Dataset to Plot .. 85
Displaying a Surface ... 86

Displaying a Shaded Surface ... 88
Displaying a Contour ... 91

Plotting with SHOW3 ... 96
Using LIVE_SURFACE for Plotting .. 97

More Information on 3-D Plotting .. 98

Chapter 8:
Volume Visualization ... 99
IDL and Volume Visualization ... 100

Reading in a Dataset for Visualization .. 101
3-D Transformations ... 102

Visualizing an Iso-Surface .. 104
Making Slices with the IDL Slicer .. 106

Displaying a Surface with the Slicer ... 108
Dismiss the Slicer and Volume Windows .. 109

More Information on Volume Visualization ... 110

Chapter 9:
Mapping ... 111
IDL and Mapping .. 112
Getting Started with IDL Contents

6

Drawing Map Projections .. 113
Drawing an Orthographic Projection ... 115

Plotting a Portion of the Globe .. 116
Plotting Data on Maps ... 117

Reading Latitudes and Longitudes ... 119
Plotting Contours Over Maps .. 120

Warping Images to Maps ... 122
More Information on Mapping .. 127

Chapter 10:
Plotting Irregularly-Gridded Data .. 129
IDL and Plotting Irregularly-Gridded Data ... 130
Creating a Dataset .. 131

The TRIANGULATE Procedure ... 133
Plotting the Results with TRIGRID ... 135

More Information on Gridding .. 137

Chapter 11:
Animation .. 139
IDL and Animation .. 140

Animating a Series of Images .. 141
Displaying an Animation as a Wire Mesh ... 143

Animation with XINTERANIMATE .. 146
Cleaning Up the Animation Windows ... 148

More Information on Animation .. 149

Chapter 12:
Programming in IDL ... 151
IDL and Programming ... 152
Programming Capabilities in the IDLDE .. 153

Built-In Editor ... 153
Types of IDL Programs ... 153

Compound Statements ... 154
Conditional Statements .. 154

Loop Statements .. 154
Jump Statements .. 154

Executing a Simple IDL Example Program ... 155
Contents Getting Started with IDL

7

Saving, Compiling and Running your Program .. 156
Debugging Tools in IDL ... 158

Breakpoints ... 158
Variable Watch window ... 158

The IDL Code Profiler .. 159
Using IDL Projects .. 160

Access to all Files in Your Application .. 160
Working with Files in Your Project .. 161

Compiling and Running Your Application ... 161
Building Distributions ... 161

Exporting Your Applications .. 161
More Information on IDL Programming ... 162

Chapter 13:
Manipulating Data ... 163
IDL and Manipulating Data .. 164
IDL Array Routines ... 165

Array Creation Routines ... 165
Array Manipulation Routines ... 166

Array and Image Processing Routines .. 166
Array Processing Capabilities ... 168

More Information on Manipulating Data .. 171

Chapter 14:
Using the IDL GUIBuilder ... 173
What is the IDL GUIBuilder? ... 174

Using the IDL GUIBuilder ... 174
IDL GUIBuilder Tools .. 176

Using the IDL GUIBuilder Toolbar .. 176
Creating an Example Application ... 177

Defining Menus for the Top-Level Base .. 177
Running the Application in Test Mode ... 181

Generating the IDL Code .. 181
Handling the Open File Event .. 182

Handling the Exit Event .. 183
Handling the Load Color Table Event .. 184

Handling the Smooth Event .. 184
Getting Started with IDL Contents

8

Compiling and Running the Example Application ... 185
Widget Types ... 187

Widget Properties .. 188
More Information on the IDL GUIBuilder .. 189

Chapter 15:
Where to Go From Here ... 191
Learning More about IDL .. 192

IDL Documentation Set ... 192

Online Manuals ... 194
Online Help ... 195

IDL Demo Applications and Examples ... 196
Contacting RSI ... 197

Address .. 197
Phone ... 197

Fax ... 197
E-mail .. 197

World Wide Web ... 197

Index .. 199
Contents Getting Started with IDL

Chapter 1:

The Power of IDL
IDL, the Interactive Data Language, is the ideal software for data analysis,
visualization, and cross-platform application development. IDL integrates a
powerful, array-oriented language with numerous mathematical analysis and
graphical display techniques, thus giving you incredible flexibility. A few lines of
IDL can do the job of hundreds of lines of C or Fortran, without losing flexibility or
performance. A fourth-generation language, IDL is radically more compact than C or
Fortran. Using IDL, tasks that require days or weeks of programming with traditional
languages can be accomplished in hours. Users can explore data interactively using
IDL commands and then create complete applications by writing IDL programs.
Getting Started with IDL 9

10 Chapter 1: The Power of IDL
Create Data in IDL - Use IDL to
crea te da t a , u s ing a com ple te ,
structured language that can be used
interactively and on sophisticated
f un c t i o ns , p r o c e du r e s , a n d
applications.

U se t h e I D L D E t o c re a t e
Applications - Use the IDLDE (IDL
Developm en t Env i ronmen t) to
compile and execute commands
immediately. It also includes built-in
editing and debugging tools that
provide instant feedback and “hands-
on” interaction.

Read and Write Data in IDL - Use IDL to read and write almost any kind of data.
Support is provided for common image standards and scientific data formats. If you
have data, you can read it into IDL!

Create Plots in IDL - IDL includes many
2-D Plotting techniques, to observe the
results of your computations immediately.

Signal Processing in IDL - Use IDL Signal
Processing techniques to process a variety of
1-D signals, from traditional filtering and
transform operations to statistical methods
such as prediction analysis.

Surface and Contour Plots - Use IDL
Surface and Contour Plotting techniques to
display any 2-D dataset as surface.

Image Processing in IDL - Use IDL
Image Processing techniques to filter
out noise and to highlight true data
characteristics and expose anomalies.

Volume Visualization in IDL - Use
I D L Vol um e Vi su a l i z a t i on
functionality to visualize 3-D volume
datasets and to display a shaded surface
representation of a constant-density
surface (also called an iso-surface).
Getting Started with IDL

Chapter 1: The Power of IDL 11
Mapping Capabil ities in IDL - Use IDL
Mapping techniques to plot data over different
projections of the globe.

Irregularly-Sampled Data - Use IDL to easily
fit irregularly-sampled data to a regular grid. This
regularly-gridded data can then be sent to IDL’s
plotting routines.

A n i m at i on in ID L - U se I DL fo r
Animation tasks to visualize your data
dynamically and to create an array of
images and play them back as an animated
sequence.

Create Applications in IDL - Use IDL to
w r i t e so ph i s t i c a t e d p r o g r a m s a n d
appl icat ions using a complete se t of
program-control statements.

I D L G UI B u i ld e r - Us e t h e I D L
GUIBuilder to interactively create user
interfaces and then generate the IDL source
code that defines that interface.
Getting Started with IDL

12 Chapter 1: The Power of IDL
Using this Manual

The chapters included in this manual provide a “hands-on” way to learn basic IDL
concepts and techniques. Getting Started with IDL demonstrates a number of
common IDL applications: reading and writing data, 2-D plotting, signal processing,
surface and contour plotting, image processing, volume visualization, mapping,
plotting irregularly-gridded data, animation, programming in IDL, manipulating data,
IDL Toolkits, and use of IDL’s GUIBuilder. Each section introduces basic IDL
concepts and highlights some of the commonly used IDL commands.

You don’t have to read all of the descriptive passages that accompany each chapter.
Simply enter the IDL commands shown in courier type at the IDL Command Input
Line (the “IDL>” prompt) and observe the results. Unless otherwise noted, each line
shown is a complete IDL command (press RETURN after typing each command). If
you want more information about a specific command, you can read the explanations.

Each chapter functions similarly to a tutorial and is a demonstration of a particular
IDL feature. It is recommended that you walk through each short, interactive chapter
to preserve continuity, since many commands rely upon previous commands. Each
chapter assumes the most basic level of IDL experience.

Note
The examples and graphics in this manual have been captured using the Windows
platform. Where needed, explanations have been provided for use of the examples
on UNIX or Macintosh platforms.

Note
The dollar sign ($) at the end of the first line is the IDL continuation character. It
allows you to enter long IDL commands as multiple lines.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Using this Manual Getting Started with IDL

Chapter 2:

The IDL Development
Environment

This chapter introduces the IDL Development Environment and its capabilities.
IDL’s Development Environment 14
Starting IDL . 15

The IDL Interfaces 16

Quitting IDL . 20
More Information on the IDLDE 21
Getting Started with IDL 13

14 Chapter 2: The IDL Development Environment
IDL’s Development Environment

IDL has a convenient multiple-document interface called the IDL Development
Environment (sometimes also referred to as the IDLDE) that includes built-in editing
and debugging tools. The IDL Development Environment is available for use on the
Windows, Macintosh, and Motif (UNIX) platforms. This chapter briefly addresses
starting IDL, quitting IDL, and describes the components of the IDL Development
Environment.
IDL’s Development Environment Getting Started with IDL

Chapter 2: The IDL Development Environment 15
Starting IDL

To run IDL, follow the instructions below.

1. Install and License IDL. For more information, see the IDL installation guide
for your platform.

2. Start IDL.

For Windows, click the Windows Start button, and select Programs →
Research Systems IDL 5.6 → IDL.

For Macintosh:

A. Navigate to the OroborOSX installation folder.

B. Double-click the OroborOSX icon. OroborOSX launches XDarwin and
displays a UNIX X-Windows command line in an OS X window.

C. Enter idlde at the UNIX command prompt.

For Motif, start IDL by entering the following at the % prompt:

idlde
Getting Started with IDL Starting IDL

16 Chapter 2: The IDL Development Environment
The IDL Interfaces

IDL’s multiple-document interface is called the IDL Development Environment
(IDLDE) and includes built-in editing and debugging tools.

Note
A command line interface is also available on UNIX and Macintosh platforms. For
more information, see the Using IDL manual.

Note
All figures which are shown in this chapter are Windows environment figures but
the IDLDE is very similar on each of the other platforms as well. Simply open the
IDLDE on your own environment and follow along with the descriptions of IDLDE
features.
The IDL Interfaces Getting Started with IDL

Chapter 2: The IDL Development Environment 17
The IDL Development Environment Layout

When you start IDL, the IDL Development Environment appears.

Menu Bar

The Menu Bar, located at the top of the main IDL window, is used to control various
IDLDE features. When you select an option from the Menu Bar in the Development
Environment, the Status Bar displays a brief description.

Tool Bar

There are three Tool Bars in the IDLDE: Standard, Run & Debug, and Macros. In
addition, when you open an IDL GUIBuilder window, its associated Tool Bar is
displayed. When you position the mouse pointer over a Tool Bar button, the Status
Bar displays a brief description. If you click on a Tool Bar button which represents an
IDL command, the IDL command issued is displayed in the Output Log.

Figure 2-1: The IDL Development Environment for Windows

Menu Bar

Tool Bar

Status Bar

Variable Watch
Window

Command Line

Multiple
Document

Project Window

Panel

Output Log
Getting Started with IDL The IDL Interfaces

18 Chapter 2: The IDL Development Environment
Project Window

The Project Window displays information about the current Project you have open in
the IDLDE. IDL Projects allow you to easily develop applications in IDL. You can
manage, compile, run, and create distributions of all the files you will need to develop
your IDL application. All of your application files can be organized so that they are
easier to access and easier to export to other developers, colleagues, or users.

Multiple Document Panel

The top section of the main IDL window is where IDL Editor windows are displayed.
The IDL Editor is where you create applications in IDL. To see the Multiple
Document Panel at work, open the file examples.pro which can be found in the path:

rsi/idl56/examples/visual/examples.pro

Notice the color coding of commands, comments, and so on.

Command Line

The Command Line is a single IDL prompt where you can enter IDL commands. If
you click the right mouse button while positioned over the Command Input Line, a
popup menu appears displaying the command history, with a default buffer of 10
entries and a maximum of 100 entries. IDL is an interpreted language and commands
are therefore executed immediately at the command line. To see the IDL Command
Line in action, enter the following in the Command Line at the IDL prompt and press
Enter:

print, 'Hello World!'

Figure 2-2: Editor Window showing example.pro
The IDL Interfaces Getting Started with IDL

Chapter 2: The IDL Development Environment 19
Output Log

Output from IDL is displayed in the Output Log window, which appears by default
when the IDLDE is first started (notice the result of our print command in the Output
Log).

Variable Watch Window

The Variable Watch window appears by default when you start the IDLDE. It keeps
track of variables as they appear and change during program execution (tabs exist for
viewing variables by type; Locals, Params, Common and System).

Status Bar

When you position the mouse pointer over a Control Panel button or select an option
from a menu item in the IDLDE, the Status Bar displays a brief description.

Figure 2-3: Entering data at the IDL Command Line

Figure 2-4: The IDL Output Log
Getting Started with IDL The IDL Interfaces

20 Chapter 2: The IDL Development Environment
Quitting IDL

To quit the current IDL session and return to the operating system, select File → Exit
in the IDL Development Environment. You can also type EXIT at the IDL Command
Line:

IDL>EXIT
Quitting IDL Getting Started with IDL

Chapter 2: The IDL Development Environment 21
More Information on the IDLDE

This overview has acquainted you with the very basic layout and function of the IDL
Development Environment. More in-depth information on working with IDL and the
IDL Development Environment (IDLDE) can be found in Using IDL.
Getting Started with IDL More Information on the IDLDE

22 Chapter 2: The IDL Development Environment
More Information on the IDLDE Getting Started with IDL

Chapter 3:

Reading and Writing
Data
This chapter introduces IDL’s ability to read and write data.
IDL and Reading and Writing Data 24
IDL Supported Formats 25

Importing Data from an ASCII File 26
Saving a Template . 35

Reading and Writing Binary Data 31
Reading and Writing Images 36

More Information on IDL and Input/Output 38
Getting Started with IDL 23

24 Chapter 3: Reading and Writing Data
IDL and Reading and Writing Data

IDL’s flexible input and output capabilities allow you to read and write virtually any
data format. When IDL reads a data file, bytes or characters in the file are converted
to the appropriate data type (unless the file is binary, in which case no conversion
takes place). Similarly, when writing data, the appropriate IDL variables are
converted to the appropriate bytes or characters. In this chapter, you’ll import some
existing data using IDL commands.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Reading and Writing Data Getting Started with IDL

Chapter 3: Reading and Writing Data 25
IDL Supported Formats

Image Formats

IDL includes routines for reading and writing many standard graphics file formats.
These routines and the types of files they support are listed below. Documentation on
these routines can be found in the IDL Reference Guide.

Scientific Data Formats

There are four self-describing scientific data formats supported by IDL:

Detailed documentation for each format can be found in the Scientific Data Formats
manual.

Other Formats

BMP PNG

GEO TIFF PPM

Interfile SRF

JPEG TIFF

NRIF XWD

PICT X11 Bitmap

CDF (Common Data Format) HDF (Hierarchical Data Format)

HDF-EOS (Earth Observing
System extensions to HDF)

netCDF (Network Common Data
Format)

ASCII Binary

DICOM WAV (Audio)

DXF XDR (External Data
Representation)
Getting Started with IDL IDL Supported Formats

26 Chapter 3: Reading and Writing Data
Importing Data from an ASCII File

One way of importing data in IDL is using the ASCII_TEMPLATE function in
conjunction with the READ_ASCII function. To import an ASCII data file into IDL,
you must first describe the format of the data using the ASCII_TEMPLATE function.

1. At the IDL Command Line, enter the following:

PLOTTEMPLATE=ASCII_TEMPLATE()

This command will guide you through assigning the description of the data to a
variable named PLOTTEMPLATE. A dialog box appears, prompting you to
select a file.

2. Select the file “plot.txt” located in the data directory:

rsi-directory/examples/data/plot.txt

Where rsi-directory is the installation directory for IDL.

Note
Another way to import ASCII data is to use the Import ASCII File toolbar button
on the IDLDE toolbar. To use this feature simply click the button and the dialog will
appear so that you may select plot.txt.

Figure 3-1: Selecting the plot.txt file
Importing Data from an ASCII File Getting Started with IDL

Chapter 3: Reading and Writing Data 27
3. The Define Data Type/Range dialog appears:

4. First we will choose the field type. Since we know our data file is delimited by
tabs (or whitespace) select the Delimited button. Also, be sure to specify to
begin reading the data at line 3, not line 1 in the Data Starts at Line field. This
is because there are two comment lines at the beginning of the file.

5. Click Next.

Figure 3-2: the ASCII_TEMPLATE dialog
Getting Started with IDL Importing Data from an ASCII File

28 Chapter 3: Reading and Writing Data
6. Now the Define Delimiter/Fields dialog box appears:

7. At this dialog, be sure to select Tab as the delimiter between data elements
since we know we have used tabs in the original file.

8. Now move on to the final dialog by clicking Next.

Figure 3-3: Selecting delimiter type in ASCII_TEMPLATE
Importing Data from an ASCII File Getting Started with IDL

Chapter 3: Reading and Writing Data 29
9. Now the Field Specification dialog box appears:

10. In this dialog, we will give a name to each data field for IDL to recognize each
set. At the top of the box, click on the first row (row 1) and then name the data
set by typing the name Time for the first set in the box.

11. Next, move on to the second row, naming this data set Temp1 for the first set
of temperatures in the data set.

12. Finally, name the last data set Temp2. Click Finish.

13. Type the following line at the IDL Command Line to read in the file
plot.txt using the template we’ve just created:

PLOT_ASCII=READ_ASCII(FILEPATH('plot.txt', SUBDIR = $
['examples', 'data']), TEMPLATE = PLOTTEMPLATE)

14. Then enter:

PRINT, PLOT_ASCII

Figure 3-4: Naming the data type sets in ASCII_TEMPLATE
Getting Started with IDL Importing Data from an ASCII File

30 Chapter 3: Reading and Writing Data
You will see the following displayed:

Note
Note that PLOT_ASCII is a type STRUCT. When using READ_ASCII to read a
file, the data is read into a structure variable. For more information on importing
data into structure variables, see Using IDL.

Note
You may need to resize the IDL Output Log in order to see the PLOT_ASCII
information displayed in correct columns.

Figure 3-5: PLOT_ASCII printed
Importing Data from an ASCII File Getting Started with IDL

Chapter 3: Reading and Writing Data 31
Reading and Writing Binary Data

Reading data files into IDL is easy if you know the format in which the data is stored.
Often, images are stored as arrays of bytes instead of a known format like JPEG or
TIFF. These files we’ll refer to as “Binary” files. The binary file that we will read in
the following example contains an image of the Maroon Bells mountains, a group of
mountains located in the Rocky Mountains of Colorado, stored as an integer array.

1. We will use the BINARY_TEMPLATE function in conjunction with the
READ_BINARY function. At the IDL Command Line, enter the following:

MARBELLSTEMPLATE=BINARY_TEMPLATE(FILEPATH('surface.dat', $
SUBDIR = ['examples', 'data']))

Note
Another way to import Binary data is to use the “Import Binary File” toolbar button
on the IDLDE toolbar. To use this feature simply click the button and the dialog will
appear so that you may select “surface.dat”.

The binary template dialog box shown above appears.

2. In the Template Name field, enter “marbellstemplate” for the name of our
new template.

3. In the File’s byte ordering pull-down field, select “Little Endian” since we
know that this file was created on an Intel processor-based machine. For more
information about file byte ordering, see Chapter 15, “Reading and Writing
Binary Data” in Using IDL.

Figure 3-6: The binary template dialog
Getting Started with IDL Reading and Writing Binary Data

32 Chapter 3: Reading and Writing Data
4. Now we are ready to enter the field values, click the New Field button in the
lower left corner of the dialog box.

5. When the New Field dialog appears, enter “A” as the field name. Verify the
box in the upper right corner marked Returned in the result since we will
want our data set returned at the time it is read.

6. At the Number of Dimensions pull-down menu, be sure to specify that we are
dealing with a two-dimensional data set here. These data are contained in a 350
by 450 array, so we will enter these values in the two boxes marked Size.

7. Finally, let the binary template dialog know that we are dealing with Integer
type data by specifying Integer (16 bits) at the Type pull-down menu. Click
OK.

Figure 3-7: Modifying fields in binary template
Reading and Writing Binary Data Getting Started with IDL

Chapter 3: Reading and Writing Data 33
Once you have entered the above data, the binary template dialog appears once
again showing the specifications you have made. Your dialog should appear as
the following figure.

8. Now click OK.

Figure 3-8: The “completed” binary template dialog
Getting Started with IDL Reading and Writing Binary Data

34 Chapter 3: Reading and Writing Data
Now we will use the READ_BINARY function to read the template we have just
created.

9. At the IDL Command Line, enter:

MARBELLS_BINARY=READ_BINARY (FILEPATH('surface.dat', $
SUBDIR=['examples', 'data']),TEMPLATE=MARBELLSTEMPLATE)

10. Now display the image by entering:

TVSCL, MARBELLS_BINARY.A

You can view an image in IDL with two different routines. The TV procedure writes
an array to the display as an image without scaling. The TVSCL procedure displays
the image with the color values scaled to use the whole color table.

Figure 3-9: Surface.dat displayed using TVSCL
Reading and Writing Binary Data Getting Started with IDL

Chapter 3: Reading and Writing Data 35
Saving a Template

If you have multiple ASCII or Binary files of the same format, you can save your
template so that you can reuse it. We’ll demonstrate saving the template we created
earlier in this section:

1. Save the ASCII template you have just created by entering:

SAVE, PLOTTEMPLATE, FILENAME='MYPLOTTEMPLATE.dat'

2. Then, you can restore the template so that you can read another ASCII file:

RESTORE, 'PLOTTEMPLATE.dat'

This actually restores the variable named PLOTTEMPLATE which contains
the template information.

You can now read in another file using the READ_ASCII function by
specifying PLOTTEMPLATE.dat for the TEMPLATE.

Note
You may also use an ASCII template to read another ASCII file provided that the
data starts on the same line as the template specifies and that it is delimited in the
same way as the template specifies.
Getting Started with IDL Saving a Template

36 Chapter 3: Reading and Writing Data
Reading and Writing Images

Reading image files into IDL is also easy if you know the format in which the image
is stored. First we must read in the image. Here we will use a TIFF format image of
an aerial satellite view of Manhattan Island in New York City.

1. Enter the following at the IDL Command Line:

MYIMAGE=READ_TIFF(FILEPATH('image.tif',SUBDIR= $
['examples', 'data']))

This command reads the image into memory.

2. Now display the image:

TV, MYIMAGE

Note
Another way to import image data is to use the “Import Image File” toolbar button
on the IDLDE toolbar. To use this feature simply click the button and the dialog will
appear so that you may select “image.tif”. However, this will name the image
differently than shown in this example. For more information, see Chapter 13,
“Reading and Writing Images” in Using IDL.

Figure 3-10: Reading and displaying an image file
Reading and Writing Images Getting Started with IDL

Chapter 3: Reading and Writing Data 37
3. Now, using IDL’s WRITE_TIFF command, rename and write the file:

WRITE_TIFF, 'imagecopy.tif', MYIMAGE
Getting Started with IDL Reading and Writing Images

38 Chapter 3: Reading and Writing Data
More Information on IDL and Input/Output

For more information about IDL’s input/output capabilities, see Using IDL. Also, for
more detailed information on the functions and procedures you have seen in this
chapter, see the IDL Reference Guide.
More Information on IDL and Input/Output Getting Started with IDL

Chapter 4:

2-D Plotting
This chapter describes the following topics:
IDL and 2-D Plotting 40
Simple Plotting . 41

Plotting with Data Sets 44

Other Plotting Capabilities 45
Using LIVE_PLOT 46

More Information on 2-D Plotting 48
Getting Started with IDL 39

40 Chapter 4: 2-D Plotting
IDL and 2-D Plotting

IDL makes plotting data easy. X versus Y plots can be displayed with a single
command and multiple plots can be viewed at the same time. This tutorial
demonstrates some of IDL’s plotting capabilities. We will also examine how you
enter statements at the IDL Command Line. This demonstrates IDL’s interactive
capability, and shows how easy it is to manipulate your data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and 2-D Plotting Getting Started with IDL

Chapter 4: 2-D Plotting 41
Simple Plotting

Simple plots can be charted using the PLOT procedure. Each call to PLOT
establishes the plot window (the rectangular area enclosed by the axis), the plot
region (the box enclosing the plot window and its annotation), the axis types (linear
or logarithmic), and the scaling.

First, we’ll plot a simple graph using a sine function. Use the FINDGEN function
here to specify the dimensions of the array. The FINDGEN function returns a single-
precision, floating-point array, with the specified dimension, where each element of
the array is set to the value of its one-dimensional subscript.

1. First, create a value for the X axis:

X= 2*!PI/100 * FINDGEN(100)

2. Now, use PLOT to visualize the array:

PLOT, SIN(X)

Also, additional data can be added, as before, using the OPLOT procedure.
Frequently, the color index, linestyle, or line thickness parameters are changed in
each call to OPLOT to distinguish the data sets. The IDL Reference Guide contains a
table describing the features you can change.

Figure 4-1: A simple sine wave using the PLOT command
Getting Started with IDL Simple Plotting

42 Chapter 4: 2-D Plotting
Using OPLOT

Now use OPLOT to plot the new information over the existing plot:

1. Plot at twice the frequency:

OPLOT, SIN(2*X)

2. Plot at three times the frequency:

OPLOT, SIN(3*X)

The results are shown in the following figure.

Figure 4-2: Graphing various data using the OPLOT command
Simple Plotting Getting Started with IDL

Chapter 4: 2-D Plotting 43
Printing a Plot

IDL allows you to easily print the plot just created. Simply enter the following
command lines shown.

1. First, save the original settings of your plotting environment:

MYDEVICE=!D.NAME

2. Tell IDL that you wish to designate the printer to be the destination for the
plot:

SET_PLOT, 'printer'

3. Now plot again to the printer:

PLOT, SIN(X)

4. Close the printing device:

DEVICE, /CLOSE

5. Redesignate the original setting as the future destination for any plots:

SET_PLOT, MYDEVICE

Note
If you are having problems printing on UNIX, be sure your printer is configured
correctly. For more information on this see DIALOG_PRINTERSETUP in the IDL
Reference Guide.
Getting Started with IDL Simple Plotting

44 Chapter 4: 2-D Plotting
Plotting with Data Sets

To demonstrate IDL’s capability to read a data set and plot it, we will use the template
and data set used in the last chapter (Chapter 3, “Reading and Writing Data”).

1. At the IDL Command Line, enter the following:

PLOT_ASCII=READ_ASCII(FILEPATH('plot.txt',SUBDIR= $
['examples', 'data']),TEMPLATE=PLOTTEMPLATE)

2. Plot the first set of data on temperatures which is stored in Temp1:

PLOT, PLOT_ASCII.TIME, PLOT_ASCII.TEMP1

Note
The file is read into a structure variable. For more information on importing data
into structure variables, see Using IDL.

Figure 4-3: Plotting an existing data set using PLOT
Plotting with Data Sets Getting Started with IDL

Chapter 4: 2-D Plotting 45
Other Plotting Capabilities

Now add titles to the simple plot graph using the TITLE, XTITLE, and YTITLE
keywords. Using these simple keywords, IDL allows you to add a title to your plot as
well as descriptive titles for your X and Y axis.

1. Plot with titles:

PLOT,PLOT_ASCII.TIME,PLOT_ASCII.TEMP1,TITLE= $
'Temperature Over Time', XTITLE= $
Time in Seconds',YTITLE='Temperature Celsius'

Figure 4-4: Adding titles to a plot using TITLE, XTITLE and YTITLE
Getting Started with IDL Other Plotting Capabilities

46 Chapter 4: 2-D Plotting
Using LIVE_PLOT

The LIVE_PLOT procedure allows you to create an interactive plotting environment.
Once plotted, you can double click on a section of the plot to display a properties
dialog. A set of buttons in the upper left corner of the image window allows you to
print, undo the last operation, redo the last “undone” operation, copy, draw a line,
draw a rectangle, or add text. Using any of several auxiliary routines, you can control
your LIVE window after it is created. See LIVE_PLOT in the IDL Reference Guide
for an explanation.

1. Read in the same “Time over Temperature” data (See Chapter 3, “Reading and
Writing Data” for instructions):

PLOT_ASCII=READ_ASCII(FILEPATH('plot.txt',SUBDIR= $
['examples', 'data']),TEMPLATE=PLOTTEMPLATE)

2. Create a LIVE plot

LIVE_PLOT,PLOT_ASCII.TEMP1,PLOT_ASCII.TEMP2, $
NAME={data:['Temp1', 'Temp2']}
Using LIVE_PLOT Getting Started with IDL

Chapter 4: 2-D Plotting 47
The result is shown in the following figure:

Figure 4-5: Using the LIVE_PLOT procedure
Getting Started with IDL Using LIVE_PLOT

48 Chapter 4: 2-D Plotting
More Information on 2-D Plotting

IDL has many more plotting capabilities than the ones shown in this chapter. To take
advantage of all of IDL’s powerful capabilities in creating two-dimensional plots,
look for more information in Using IDL.
More Information on 2-D Plotting Getting Started with IDL

Chapter 5:

Signal Processing
This chapter describes the following topics:
IDL and Signal Processing 50
Creating a Data Set 51

Signal Processing with SMOOTH 54

Frequency Domain Filtering 55
Displaying the Results 58

More Information on Signal Processing . . . 60
Getting Started with IDL 49

50 Chapter 5: Signal Processing
IDL and Signal Processing

This chapter introduces you to IDL’s digital signal processing tools. Most of the
procedures and functions mentioned here work in two or more dimensions. For
simplicity, only one-dimensional signals are used in the examples.

A signal, by definition, contains information. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in a digital signal by looking at it in its raw form—that is, as a
sequence of real values at discrete points in time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.
IDL and Signal Processing Getting Started with IDL

Chapter 5: Signal Processing 51
Creating a Data Set

First, we need to create a dataset to display.

1. Enter the following command to create a sinewave function with a frequency
that increases over time and store it in a variable called ORIGINAL:

ORIGINAL=SIN((FINDGEN(200)/35)^2.5)

The FINDGEN function returns a floating-point array in which each element
holds the value of its subscript, giving us the increasing “time” values upon
which the sinewave is based. The sine function of each “time” value divided
by 35 and raised to the 2.5 power is stored in an element of the variable
ORIGINAL.

2. To view a quick plot of this dataset, shown in the following, enter:

PLOT, ORIGINAL

Figure 5-1: Plot of increasing frequency
Getting Started with IDL Creating a Data Set

52 Chapter 5: Signal Processing
3. Now add some uniformly-distributed random noise to this dataset and store it
in a new variable:

NOISY=ORIGINAL+((RANDOMU(SEED,200)-.5)/ 2)

4. Now plot the array:

PLOT, NOISY

The RANDOMU function creates an array of uniformly distributed random
values. The original dataset plus the noise is stored in a new variable called
NOISY. This dataset looks more like real-world test data.

Figure 5-2: Plot of random noise
Creating a Data Set Getting Started with IDL

Chapter 5: Signal Processing 53
5. Display the original dataset and the noisy version simultaneously by entering
the following commands:

PLOT, ORIGINAL, XTITLE="Time",YTITLE="Amplitude",THICK=3

6. Then overplot the previous data:

OPLOT, NOISY

The XTITLE and YTITLE keywords are used to create the X and Y axis titles.
The OPLOT command plots the NOISY dataset over the existing plot of
ORIGINAL without erasing. Setting the THICK keyword causes the default
line thickness to be multiplied by the value assigned to THICK, so you can
differentiate between the data. This result can be seen in the following figure.

Figure 5-3: Combined plotting of datasets using the OPLOT command and
THICK keyword
Getting Started with IDL Creating a Data Set

54 Chapter 5: Signal Processing
Signal Processing with SMOOTH

A simple way to smooth out the NOISY dataset is to use IDL’s SMOOTH function. It
returns an array smoothed with a boxcar average of a specified width.

1. Create a new variable to hold the smoothed dataset by entering the following
command:

SMOOTHED=SMOOTH(NOISY, 5)

2. Now plot your new data set:

PLOT,SMOOTHED,TITLE='Smoothed Data'

The TITLE keyword draws the title text centered over the plot. Notice that
while SMOOTH did a fairly good job of removing noise spikes, the resulting
amplitudes taper off as the frequency increases.

Figure 5-4: Using the SMOOTH command
Signal Processing with SMOOTH Getting Started with IDL

Chapter 5: Signal Processing 55
Frequency Domain Filtering

Perhaps a better way to eliminate noise in the NOISY dataset is to use Fourier
transform filtering techniques. Noise is basically unwanted high-frequency content in
sampled data. Applying a lowpass filter to the noisy data allows low-frequency
components to remain unchanged while high-frequencies are smoothed or attenuated.
Construct a filter function by entering the following step-by-step commands:

1. Create a floating point array using FINDGEN which sets each element to the
value of its subscript and stores it in the variable Y by entering:

Y=[FINDGEN(100),FINDGEN(100)-100]

2. Next, make the last 99 elements of Y a mirror image of the first 99 elements:

Y[101:199]=REVERSE(Y[0:98])

3. Now, create a variable filter to hold the filter function based on Y:

filter=1.0/(1+(Y/40)^10)

4. Finally, plot:

PLOT,FILTER

Figure 5-5: Constructing a filter function
Getting Started with IDL Frequency Domain Filtering

56 Chapter 5: Signal Processing
To filter data in the frequency domain, we multiply the Fourier transform of
the data by the frequency response of a filter and then apply an inverse Fourier
transform to return the data to the spatial domain.

1. Now we can use a lowpass filter on the NOISY dataset and store the filtered
data in the variable lowpass by entering:

LOWPASS=FFT(FFT(NOISY,1)*filter,-1)

2. Then plot:

PLOT, LOWPASS

Note
Your plots may look slightly different due to the random number generator.

Figure 5-6: Using a LOWPASS filter
Frequency Domain Filtering Getting Started with IDL

Chapter 5: Signal Processing 57
1. The same filter function can be used as a high-pass filter (allowing only the
high frequency or noise components through) by entering:

HIGHPASS=FFT(FFT(NOISY,1)*(1.0-filter),-1)

2. Then plot:

PLOT, HIGHPASS

Figure 5-7: Using a highpass filter
Getting Started with IDL Frequency Domain Filtering

58 Chapter 5: Signal Processing
Displaying the Results

Now look at all of the results at the same time. The plotting window can be split into
six sections, making each section display a different plot. The system variable
!P.MULTI tells IDL how many plots to put on a single page.

Enter the following lines to display a plotting window which shows all of the plots
simultaneously.

1. To display all plots at the same time with two columns and three rows, enter:

!P.MULTI=[0,2,3]

2. Now, display original dataset, upper-left:

PLOT,ORIGINAL,TITLE='Original (Ideal) Data'

3. Next, display noisy dataset in the upper-right:

PLOT,NOISY,TITLE='Noisy Data'

4. Display filter function, middle-left. The SHIFT function was used to show the
filter’s peak as centered.

PLOT,SHIFT(filter,100),TITLE='Filter Function'

5. Now, display low-pass filtered dataset in the middle-right:

PLOT,LOWPASS,TITLE='Lowpass Filtered'

6. Display high-frequency noise, lower-left:

PLOT,HIGHPASS,TITLE='Highpass Filtered'
Displaying the Results Getting Started with IDL

Chapter 5: Signal Processing 59
7. Finally, display the SMOOTH function dataset for comparison with the low-
pass filtered data in the lower right.

PLOT, smoothed, TITLE = 'Smoothed with Boxcar average'

8. Before continuing with the rest of the chapters, reset the plotting window to
display a single image by entering the command:

!P.MULTI = 0

Figure 5-8: Display results using !P.MULTI to show six plots in one plotting
window
Getting Started with IDL Displaying the Results

60 Chapter 5: Signal Processing
More Information on Signal Processing

Using just a few IDL commands, we have performed some complex and powerful
signal processing tasks. IDL has many more signal processing abilities than the ones
shown in this chapter. To take advantage of all of IDL’s powerful capabilities, look
for more information in the Using IDL manual.
More Information on Signal Processing Getting Started with IDL

Chapter 6:

Image Processing
This chapter describes the following topics:
IDL and Image Processing 62
Reading an Image . 63

Displaying an Image 64
Resizing an Image . 66

Resizing a Graphics Window 67
Contrast Enhancement 68

Smoothing and Sharpening 74
Other Image Manipulations 78

Extracting Profiles 80
Using LIVE_IMAGE 81

More Information on Image Processing . . . 82
Getting Started with IDL 61

62 Chapter 6: Image Processing
IDL and Image Processing

IDL is an ideal tool for image processing because of its interactive operation, uniform
notation, and array-oriented operators and functions. Images are easily represented as
two-dimensional arrays in IDL and can be processed just like any other array. IDL
also contains many procedures and functions specifically designed for image display
and processing.

In this chapter, we will enter statements at the IDL Command Line. This
demonstrates IDL’s interactive capability, and shows how easy it is to manipulate
your data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Image Processing Getting Started with IDL

Chapter 6: Image Processing 63
Reading an Image

First we must import an image to be processed. Reading data files into IDL is easy.
The file that we will read contains the image we used in Chapter 3, “Reading and
Writing Data” of an aerial view above Manhattan in TIFF format.

1. Read the file by entering:

MYIMAGE=READ_TIFF(FILEPATH('image.tif',SUBDIR= $
['examples', 'data']))
Getting Started with IDL Reading an Image

64 Chapter 6: Image Processing
Displaying an Image

You can view an image in IDL with two different routines. The TV procedure writes
an array to the display as an image without scaling. Enter the commands below at the
IDL Command Line.

Note
The default graphics window size is 640 by 512 pixels in size on a UNIX
workstation and one-fourth of the display size on most Windows environments.

1. Display the image:

TV, MYIMAGE

2. Enter WDELETE at the Command Line to dismiss the graphics window.

WDELETE

3. The TVSCL procedure displays the image with the color values scaled to use
the whole color table. Display the scaled image:

TVSCL, MYIMAGE

Figure 6-1: Displaying an image with TV
Displaying an Image Getting Started with IDL

Chapter 6: Image Processing 65
4. Enter WDELETE at the Command Line to dismiss the graphics window.

WDELETE

Figure 6-2: Displaying an image with TVSCL
Getting Started with IDL Displaying an Image

66 Chapter 6: Image Processing
Resizing an Image

The REBIN function in IDL makes it easy to resize a vector or array to new
dimensions. The supplied dimensions must be proportionate (that is, integral
multiples or factors) to the dimensions of the original image. Since our original image
array here is 768 by 512, we’ll need to decide the correct dimensions of our new
resized image. If we want to resize the image to half the original size then simply take
half of the array’s original dimensions.

1. Create a new image with new dimensions using the REBIN function:

NEWIMAGE=REBIN(MYIMAGE,384,256)

2. Now display the image:

TV, NEWIMAGE

3. Enter WDELETE at the Command Line to dismiss the graphics window.

WDELETE

Note
The CONGRID function also shrinks or expands the size of an array. CONGRID
differs from REBIN in that where REBIN requires that the new array size must be
an integer multiple of the original size, CONGRID will resize an array to any
arbitrary size. For more information, see CONGRID in the IDL Reference Guide.

Figure 6-3: MYIMAGE resized to one half the original array size
Resizing an Image Getting Started with IDL

Chapter 6: Image Processing 67
Resizing a Graphics Window

IDL automatically creates a window for displayed graphics if one does not already
exist. You can use the WINDOW command to create new windows with custom
sizes.

1. To display Manhattan in a larger graphics window, enter:

WINDOW,0,XSIZE=800,YSIZE=600

2. Then enter:

TV,MYIMAGE

3. Enter WDELETE at the Command Line to dismiss the graphics window for
the next graphic.

WDELETE

The WINDOW command above creates a new version of window number 0 that is
800 pixels wide (specified with the XSIZE keyword) and 500 pixels tall (specified
with the YSIZE keyword).

Figure 6-4: Visualizing a graphic through a larger graphic window
Getting Started with IDL Resizing a Graphics Window

68 Chapter 6: Image Processing
Contrast Enhancement

In order to improve the look of an image, sometimes all that is necessary is a change
in how the colors are represented. IDL provides several ways to manipulate the
contrast.

Thresholding

One of the simplest contrast enhancements that can be performed on an image is
thresholding. Thresholding produces a two-level mapping from all of the possible
intensities into black and white. The IDL relational operators, EQ, NE, GE, GT, LE,
and LT, return a value of 1 if the relation is true and 0 if the relation is false. When
applied to images, the relation is evaluated for each pixel and an image of 1’s and 0’s
results.

1. To display the pixels in the image that have values greater than 140 as white
and all others as black, as shown in the following, enter:

TVSCL,MYIMAGE GT 140

Figure 6-5: Image with all values greater than 140 shown as white
Contrast Enhancement Getting Started with IDL

Chapter 6: Image Processing 69
2. Similarly, the pixels that have values less than 140 can be displayed as white,
as shown, by entering the command:

TVSCL,MYIMAGE LT 140

In many images, the pixels have values that are only a small subrange of the
possible values. By spreading the distribution so that each range of pixel
values contains an approximately equal number of members, the information
content of the display is maximized, as shown in the following.

Figure 6-6: Image with all values less than 140 shown as white
Getting Started with IDL Contrast Enhancement

70 Chapter 6: Image Processing
3. The HIST_EQUAL function performs this redistribution on an array. To
display a histogram-equalized version of myimage, enter the following:

TV, HIST_EQUAL(myimage)

Figure 6-7: A histogram-equalized version of the image
Contrast Enhancement Getting Started with IDL

Chapter 6: Image Processing 71
Scaling Pixel Values

Another way to enhance the contrast of an image is to scale a subrange of pixel
values to fill the entire range of displayed brightnesses. The > operator, the IDL
maximum operator, returns a result equal to the larger of its two parameters. The
following commands contrast the maximum and minimum operators.

1. Scale pixels with a value of 100 or greater into the full range of displayed
brightnesses:

TVSCL,MYIMAGE > 100

2. Scale pixels with a value less than 140 into the full range of brightnesses.

TVSCL,MYIMAGE < 140

Figure 6-8: Image with pixels >100 scaled to full range of brightness
Getting Started with IDL Contrast Enhancement

72 Chapter 6: Image Processing
3. The minimum and maximum operators can be used together for more
complicated contrast enhancements. Set the minimum brightness to 140, set
the maximum brightness to 200, scale myimage and display it by entering:

TVSCL,MYIMAGE >140<200

Figure 6-9: Image with pixels <140 scaled to full range of brightness

Figure 6-10: Image with minimum brightness at 140
and maximum brightness at 200
Contrast Enhancement Getting Started with IDL

Chapter 6: Image Processing 73
Note
Although this command illustrates the use of the IDL minimum and maximum
operators, the same function can be executed more efficiently by IDL with the
command:

TV, BYTSCL(MYIMAGE,MIN=140,MAX=200,TOP=!D.TABLE_SIZE)
Getting Started with IDL Contrast Enhancement

74 Chapter 6: Image Processing
Smoothing and Sharpening

Images can be rapidly smoothed to soften edges or compensate for random noise in
an image using IDL’s SMOOTH function. SMOOTH performs an equally weighted
smoothing using a square neighborhood of an arbitrary odd width, as shown below.

1. Display myimage smoothed using a 7 by 7 area:

TVSCL,SMOOTH(MYIMAGE,7)

Figure 6-11: Smoothing with SMOOTH
Smoothing and Sharpening Getting Started with IDL

Chapter 6: Image Processing 75
Unsharp Masking

The previous image looks a bit blurry because it contains only the low frequency
components of the original image. Often, an image needs to be sharpened so that
edges or high spatial frequency components of the image are enhanced. One way to
sharpen an image is to subtract a smoothed image containing only low-frequency
components from the original image. This technique is called unsharp masking.

1. Unsharp mask and display image:

TVSCL, FLOAT(MYIMAGE)-SMOOTH(MYIMAGE,7)

This command subtracts a smoothed version of the image from the original, scales
the result, and displays it, as shown previously.

Figure 6-12: Unsharp masking
Getting Started with IDL Smoothing and Sharpening

76 Chapter 6: Image Processing
Sharpening Images with Differentiation

IDL has other built-in sharpening functions that use differentiation to sharpen
images. The ROBERTS function returns the Roberts gradient of an image. Enter the
following commands:

1. Create a new variable, R, that contains the Roberts gradient of myimage:

R=ROBERTS(MYIMAGE)

2. Display array R:

TVSCL, R

Another commonly used gradient operator is the Sobel operator. IDL’s SOBEL
function operates over a 3 by 3 region, making it less sensitive to noise than some
other methods. Enter the following commands.

1. Create a Sobel sharpened version of the image:

SO=SOBEL(MYIMAGE)

2. Display the sharper image:

TVSCL, SO

Figure 6-13: Roberts gradient of myimage
Smoothing and Sharpening Getting Started with IDL

Chapter 6: Image Processing 77
Loading Different Color Tables

Try loading some of the pre-defined IDL color tables to make this image more
visible. While the graphics window is visible, type XLOADCT at the IDL Command
Input Line. The XLOADCT widget application appears. Select a color table from the
field; the window will reflect the color scheme. Click “Done” to accept a color table.
When you are finished looking at the effects of different tables, click on the first color
table in the field, B-W Linear, and click “Done” to load the original black and white
color table.

Note
If you load a new color table while an image is still being displayed on a 24-bit
(true) color display, you will need to close the image and reload it in IDL in order to
see the new image displayed in the new color scheme. In an 8-bit (pseudo) color
display however, you will not need to re-display the image as the color change will
be immediate.

Figure 6-14: Sobel sharpened version of myimage
Getting Started with IDL Smoothing and Sharpening

78 Chapter 6: Image Processing
Other Image Manipulations

Sections of images can be easily displayed by using subarrays.

1. Erase the current display, create a new array that contains Manhattan and
display it by entering:

ERASE
E=MYIMAGE[100:300, 150:250]

2. Then enter:

TV, E

3. Enter WDELETE at the Command Line to dismiss the graphics window.

WDELETE

Figure 6-15: Displaying a section of an image
Other Image Manipulations Getting Started with IDL

Chapter 6: Image Processing 79
Rotating an Image

Simple rotation in multiples of 90 degrees can be accomplished with the ROTATE
function.

1. Rotate the image by 90 degrees, as shown below, by entering:

R=ROTATE(E,1)

2. Now enter to display:

TVSCL, R

The second parameter of ROTATE is an integer from 1 to 8 that specifies
which one of the eight possible combinations of rotation and axis reversal to
use.

3. Enter WDELETE at the Command Line to dismiss the graphics window for
the next graphic.

WDELETE

Figure 6-16: The image rotated by 90 degrees
Getting Started with IDL Other Image Manipulations

80 Chapter 6: Image Processing
Extracting Profiles

Another useful image processing tool is the PROFILES routine. This routine
interactively draws row or column profiles of an image. It allows you to view an
image and an X-Y plot of the pixel brightnesses in any row or column of the image
simultaneously.

1. Use the PROFILES routine with the rotated image that you just displayed by
entering the following:

PROFILES, R

A new window for displaying the profiles appears. Move the cursor in the
window containing the image R to display the profiles of different rows and
columns.

2. Click the left mouse button while the cursor is in the image window to switch
between displaying row and column profiles.

3. Click the right mouse button while the cursor is in the image window to exit
the PROFILES routine.

Figure 6-17: Viewing an image and an X-Y plot of the pixel brightnesses in any
row or column
Extracting Profiles Getting Started with IDL

Chapter 6: Image Processing 81
Using LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations and allows interactive
manipulation using the mouse and keyboard.

1. To display the same image of New York City that we used in Chapter 3,
“Reading and Writing Data”, this time using LIVE_IMAGE, enter:

LIVE_IMAGE, MYIMAGE

You can click once on the image and then drag the cursor across the image to read the
image values.

You may also double-click on the image to display a properties dialog. The set of
buttons in the upper left corner of the image window allows you to print, undo the last
operation, redo the last “undone” operation, copy, draw a line, draw a rectangle, or
add text. The LIVE_IMAGE window may also be resized using the mouse.

Figure 6-18: MYIMAGE shown using LIVE_IMAGE
Getting Started with IDL Using LIVE_IMAGE

82 Chapter 6: Image Processing
More Information on Image Processing

IDL offers much more in the area of Image Processing. To learn more including some
of the new functionality added to IDL on image display and image processing, see
Using IDL.
More Information on Image Processing Getting Started with IDL

Chapter 7:

Surface and Contour
Plotting
This chapter describes the following topics:
IDL and Surface and Contour Plotting 84
Reading a Dataset to Plot 85

Displaying a Surface 86
Displaying a Shaded Surface 88

Displaying a Contour 91
Plotting with SHOW3 96

Using LIVE_SURFACE for Plotting 97
More Information on 3-D Plotting 98
Getting Started with IDL 83

84 Chapter 7: Surface and Contour Plotting
IDL and Surface and Contour Plotting

IDL provides many techniques for visualizing two-dimensional arrays, including
contour plots, wire-mesh surfaces, and shaded surfaces. This chapter demonstrates
just a few of the commands for visualizing data in three dimensions.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Surface and Contour Plotting Getting Started with IDL

Chapter 7: Surface and Contour Plotting 85
Reading a Dataset to Plot

First, we need to create a two-dimensional dataset to visualize. For these examples
we will use the binary dataset of the Maroon Bells mountains that we used in the
section “Reading and Writing Binary Data” on page 31. You will need to turn back to
that section to once again use the BINARY_TEMPLATE and READ_BINARY
functions to read this data set for use. Once you have read the file into IDL, you are
ready to move on to visualizing the data set three-dimensionally.
Getting Started with IDL Reading a Dataset to Plot

86 Chapter 7: Surface and Contour Plotting
Displaying a Surface

First, view the array MARBELLS_BINARY.A as a three-dimensional, “wire-mesh”
surface. Use the CONGRID procedure initially to resample the data set so that the
“mesh” can be displayed at a size visible to the human eye.

1. Here resample the array size to 35 by 45, or one tenth its original size. To do
this enter:

A=CONGRID(MARBELLS_BINARY.A,35,45)

2. Now we are ready to visualize the mesh using the SURFACE command:

SURFACE, A

The SURFACE command can be used to view your data from different angles. AX
and AZ are plotting keywords that are used to control the SURFACE command. The
keyword AX specifies the angle of rotation of the surface (in degrees towards the
viewer) about the X axis. The AZ keyword specifies the rotation of the surface in
degrees counterclockwise around the Z axis.

Figure 7-1: Surface plot with default angles
Displaying a Surface Getting Started with IDL

Chapter 7: Surface and Contour Plotting 87
3. View the array from a different angle by entering the following command:

SURFACE, A, AX = 70, AZ = 25

Figure 7-2: Surface plot showing different angles
Getting Started with IDL Displaying a Surface

88 Chapter 7: Surface and Contour Plotting
Displaying a Shaded Surface

You can also view a two-dimensional array as a light-source shaded surface.

1. First, load one of the pre-defined IDL color tables by entering:

LOADCT, 3

2. To view the light-source shaded surface, shown in the following, simply enter
the command:

SHADE_SURF, A

3. To look at the array from another angle, enlarge the label text, and add a title.
Again, keywords are used to control certain features of the shaded surface plot.
The AX and AZ keywords control the viewing angle, just as they did with the
SURFACE command.

The CHARSIZE keyword controls the size of plotted text. The TITLE
keyword was used to add the title “Shaded Surface Representation”.

SHADE_SURF,A,AX=45,AZ=20,CHARSIZE=1.5, $
TITLE='Shaded Surface Representation'

Figure 7-3: Surface plot with light-source shaded
Displaying a Shaded Surface Getting Started with IDL

Chapter 7: Surface and Contour Plotting 89
4. You can create a different kind of shaded surface, where the shading
information is provided by the elevation of each point. Now different shading
colors on the plot correspond to different elevations (the BYTSCL function
scales the data values into the range of bytes).

You could also specify a different array for the shading colors.

SHADE_SURF,A,SHADE=BYTSCL(A)

Figure 7-4: Surface plot with annotated surface plot

Figure 7-5: Byte-scaled surface plot
Getting Started with IDL Displaying a Shaded Surface

90 Chapter 7: Surface and Contour Plotting
5. You can plot a wire-frame surface of the Maroon Bells (mountains) right over
the existing plot. The XSTYLE, YSTYLE, and ZSTYLE keywords are used to
select different styles of axis. Here, SURFACE is set to not draw the X, Y, and
Z axis because they were already drawn by the SHADE_SURF command.

The /NOERASE keyword allows the SURFACE plot to be drawn over the
existing SHADE_SURF plot. Enter the following:

SURFACE,A,XSTYLE=4,YSTYLE=4,ZSTYLE=4,/NOERASE

Figure 7-6: Byte-scaled surface plot with an overlaid wire-frame
Displaying a Shaded Surface Getting Started with IDL

Chapter 7: Surface and Contour Plotting 91
Displaying a Contour

Another way to view a two-dimensional array is as a contour plot. A simple contour
plot of the Data can be created.

1. Set the array size back to its original 350 by 450 size by entering:

A=MARBELLS_BINARY.A

2. Plot the contour:

CONTOUR, A

That command was very simple, but the resulting plot was not as informative
as it could be.

Figure 7-7: Contour plot
Getting Started with IDL Displaying a Contour

92 Chapter 7: Surface and Contour Plotting
3. Create a customized CONTOUR plot with more elevations and labels by
entering:

CONTOUR,A,NLEVELS=8,C_LABELS=[0,1]

By using the NLEVELS keyword, CONTOUR was told to plot eight equally-
spaced elevation levels. The C_LABELS keyword specifies which contour
levels should be labeled. By default, every other contour is labeled.
C_LABELS allows you to override this default and explicitly specify the
levels to label.

Figure 7-8: Contour plot with elevation labeled
Displaying a Contour Getting Started with IDL

Chapter 7: Surface and Contour Plotting 93
4. Similarly, you can create a filled contour plot where each contour level is filled
with a different color (or shade of gray) by setting the FILL keyword. To do
this, enter:

CONTOUR,A,NLEVELS=8,/FILL

5. To outline the resulting contours, make another call to CONTOUR and set the
OVERPLOT keyword to keep the previous plot from being erased.

You can add tickmarks that indicate the slope of the contours (the tickmarks
point in the downhill direction) by setting the DOWNHILL keyword:

CONTOUR,A,NLEVELS=8,/OVERPLOT,/DOWNHILL

Figure 7-9: Contour plot with filled contour plot
Getting Started with IDL Displaying a Contour

94 Chapter 7: Surface and Contour Plotting
6. CONTOUR plots can be rendered from a three-dimensional perspective.

First, set up the default 3-D viewing angle by entering:

SURFR

7. By using the T3D keyword in the next call to CONTOUR, the contours will be
drawn as seen from a 3-D perspective. Enter:

CONTOUR,A,NLEVELS=8,/T3D

Figure 7-10: Contour plot with downhill tickmarks labeled
Displaying a Contour Getting Started with IDL

Chapter 7: Surface and Contour Plotting 95
Figure 7-11: Contour plot with 3-D contour plot
Getting Started with IDL Displaying a Contour

96 Chapter 7: Surface and Contour Plotting
Plotting with SHOW3

In addition to IDL’s built-in routines, there are many functions and procedures
included with IDL that are written in the IDL language and that can be changed,
customized, or even rewritten by IDL users. The SHOW3 procedure is one of these
routines.

1. Create a plot that shows a two-dimensional array as an image, wire-frame
surface, and contour simultaneously.

SHOW3,A

Figure 7-12: Combined surface and contour plots using SHOW3
Plotting with SHOW3 Getting Started with IDL

Chapter 7: Surface and Contour Plotting 97
Using LIVE_SURFACE for Plotting

The LIVE_SURFACE procedure allows interactive manipulation using the mouse
and keyboard. Usually, LIVE_SURFACE is most suitable for relatively small data
sets since the interactive environment requires extra system resources.

After you execute LIVE_SURFACE, you can double-click on a section of the surface
to display a properties dialog. The buttons in the upper left of the image window
allow you many options (print, undo, redo, copy, line, rectangle, text and so on).

1. Here, to visualize a surface representation, enter the following:

LIVE_SURFACE,A

Figure 7-13: Visualization of surface representation using LIVE_SURFACE.
Getting Started with IDL Using LIVE_SURFACE for Plotting

98 Chapter 7: Surface and Contour Plotting
More Information on 3-D Plotting

The SURFACE, CONTOUR, and SHADE_SURF commands have many more
options that can be used to create even more complex, customized plots. For more
information on plotting multi-dimensional arrays, see Chapter 18, “Plotting Multi-
Dimensional Arrays” in Using IDL and the documentation for specific routines in the
IDL Reference Guide.
More Information on 3-D Plotting Getting Started with IDL

Chapter 8:

Volume Visualization
This chapter describes the following topics:
IDL and Volume Visualization 100
Reading in a Dataset for Visualization . . . 101

3-D Transformations 102
Visualizing an Iso-Surface 104

Making Slices with the IDL Slicer 106
Displaying a Surface with the Slicer 108

More Information on Volume Visualization 110
Getting Started with IDL 99

100 Chapter 8: Volume Visualization
IDL and Volume Visualization

IDL can be used to visualize multi-dimensional volume datasets. Given a 3-D grid of
density measurements, IDL can display a shaded surface representation of a constant-
density surface (also called an iso-surface). For example, in medical imaging
applications, a series of 2-D images can be created by computed tomography or
magnetic resonance imaging. When stacked, these images create a grid of density
measurements that can be contoured to display the surfaces of anatomical structures.

This chapter demonstrates the use of the SHADE_VOLUME and POLYSHADE
commands for iso-surface visualization.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows by entering the following command at the
IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Volume Visualization Getting Started with IDL

Chapter 8: Volume Visualization 101
Reading in a Dataset for Visualization

The following steps illustrate the use of BINARY_TEMPLATE and
READ_BINARY to read in a dataset:

1. First, create the template for reading the data. At the IDL Command Line,
enter:

MYTEMPLATE=BINARY_TEMPLATE(FILEPATH('head.dat',$
SUBDIR=['examples', 'data']))

The binary template dialog box appears.

2. In the Template Name field, enter “Head” as the name of the new template.

3. Now we are ready to enter the field values, click the box in the lower left
corner of the dialog box called “New Field”.

4. When the New/Modify Field dialog appears, enter “B” as the field name.
Check the box in the upper right corner marked “Returned” since we will want
our data set returned at the time it is read.

At the “Number of Dimensions” pull-down menu, be sure to specify that we
are dealing with a three-dimensional data set. These data are contained in an 80
by 100 by 57 array, so we will enter these values in the three boxes marked
“size”.

Finally, let the binary template dialog know that we are dealing with Byte type
data by specifying “Byte (Unsigned 8-bits) at the “Type” pull-down menu.

Once you have entered the above data, the binary template dialog appears once
again showing the specifications you have made.

5. Click “OK”.

Now we will use the READ_BINARY procedure to read the data defined by
template we have just created.

6. At the IDL Command Line, enter:

HEAD_BINARY=READ_BINARY(FILEPATH('head.dat',SUBDIR=['example
s',$

'data']),TEMPLATE=MYTEMPLATE)
Getting Started with IDL Reading in a Dataset for Visualization

102 Chapter 8: Volume Visualization
3-D Transformations

When creating “3-D” plots (for example, surfaces, shaded surfaces, and volume
visualizations), a three-dimensional transformation needs to be set up. The 3-D
transformation applies the requested translation, rotation, and scaling to a 3-D plot
before displaying it.

Three-dimensional transformations are especially important when using the
POLYSHADE routine. Unless the transformation is set up such that the entire volume
is visible, the volume will not be rendered correctly. Once a 3-D transformation has
been established, most IDL plotting routines can be made to use it by including the
T3D keyword.

There are a number of ways to set up a transformation matrix in IDL.

One way is that a transformation matrix can be entered explicitly into the system
variable !P.T. This method is rather difficult, because you have to figure out the
transformation yourself. More information about the transformation matrix can be
found in Chapter 18, “Plotting Multi-Dimensional Arrays” of Using IDL.

Another method, is the SURFACE and SHADE_SURF commands, which
automatically create a 3-D transformation based on the datasets being visualized.

1. For example, specify a slice of the data:

SLICE=(HEAD_BINARY.B)[*,*,25]

2. Now surface the slice specified:

SURFACE, SLICE
3-D Transformations Getting Started with IDL

Chapter 8: Volume Visualization 103
A number of different IDL procedures that simplify the creation of 3-D
transformations can be used. Keyword arguments to some of these procedures allow
you to set viewing angles and data ranges. The procedures then create the appropriate
transformation matrix for you and store it in !P.T. These procedures include T3D,
SCALE3, SCALE3D, and SURFR. For more information on these routines, consult
the IDL Reference Guide.

Figure 8-1: Using SURFACE to visualize a slice of head.dat
Getting Started with IDL 3-D Transformations

104 Chapter 8: Volume Visualization
Visualizing an Iso-Surface

Two IDL commands, SHADE_VOLUME and POLYSHADE, are used together to
visualize an iso-surface. SHADE_VOLUME generates a list of polygons that define
a 3-D surface given a volume dataset and a contour (or density) level. The function
POLYSHADE can then be used to create a shaded-surface representation of the iso-
surface from those polygons.

Like many other IDL commands, POLYSHADE accepts the T3D keyword that
makes POLYSHADE use a user-defined 3D transformation. Before you can use
POLYSHADE to render the final image, you need to set up an appropriate three-
dimensional transformation. The XRANGE, YRANGE, and ZRANGE keywords
accept 2-element vectors, representing the minimum and maximum axis values, as
arguments.The POLYSHADE function returns an image based upon the list of
vertices, V, and list of polygons, P. The T3D keyword tells POLYSHADE to use the
previously-defined 3D transformation. The TV procedure displays the shaded-
surface image.

Enter the following lines:

1. Create the polygons and vertices that define the iso-surface with a value of 70.
Return the vertices in V and the polygons in P:

SHADE_VOLUME,HEAD_BINARY.B,70,V,P,/LOW

2. Set appropriate limits for the X, Y, and Z axes with the SCALE3 procedure:

SCALE3,XRANGE=[0,80],YRANGE=[0,100],ZRANGE=[0,57]
Visualizing an Iso-Surface Getting Started with IDL

Chapter 8: Volume Visualization 105
3. Display a shaded-surface representation of the previously generated arrays of
vertices and polygons:

TV,POLYSHADE(V,P,/T3D)

Figure 8-2: Shaded-surface representation using POLYSHADE
Getting Started with IDL Visualizing an Iso-Surface

106 Chapter 8: Volume Visualization
Making Slices with the IDL Slicer

Another useful volume visualization tool is IDL’s SLICER3 procedure. The Slicer is
a widget-based application that allows you to create iso-surfaces and pass cutting
planes through 3-D datasets.

The IDL Slicer provides many other volume visualization techniques. As the name
implies, the slicer allows you to look at slices through a volume dataset.

1. To use the slicer with dataset B, it is first required to pass in a pointer to the
data set by entering the following at the IDL Command Line:

BDATA=PTR_NEW(HEAD_BINARY.B)

2. Then enter:

SLICER3,BDATA

3. The IDL Slicer appears. The Slicer window will come up empty by default
though the data is loaded. Be sure that the Mode pull-down menu is set to Slice
which is the default. Position the pointer within the cube. Hold down the left
mouse button and move the mouse. (In IDL for Macintosh, the mouse button is
interpreted as the left mouse button.) An outline of the cutting plane appears.
This plane moves only in the direction indicated by the orientation display.
Making Slices with the IDL Slicer Getting Started with IDL

Chapter 8: Volume Visualization 107
Move the cutting plane to the center of the volume and release the mouse
button. A cross-section of the volume is displayed.

4. To make slices in different orientations, move the cursor into the large drawing
window and press the right mouse button.

5. To simulate a right mouse button press, IDL for Macintosh users can hold
down the command key and click the mouse. The orientation display changes
to show the new direction of the cutting plane.

6. Click the right button a second time to see the third possible orientation.

7. Make slices in these orientations by clicking on the mouse button and dragging
the cutting plane outline to the desired location.

Figure 8-3: IDL Slicer3
Getting Started with IDL Making Slices with the IDL Slicer

108 Chapter 8: Volume Visualization
Displaying a Surface with the Slicer

To display a surface with the IDL Slicer, do the following:

1. To create a surface in Slicer similar to the one you created previously at the
IDL command line, click on the Surface option on the Mode pull-down menu
on the Slicer. A Surface Threshold window, a slider, and a number of new
buttons should appear.

2. Click in the Surface Threshold and slide the determiner line to choose the
Display button. A status window reports on the number of vertices and
polygons generated and then the iso-surface appears.

Figure 8-4: IDL Slicer3 with a surface
Displaying a Surface with the Slicer Getting Started with IDL

Chapter 8: Volume Visualization 109
Dismiss the Slicer and Volume Windows

When you are done experimenting with the Slicer, before continuing with other
chapters in this book, you should dismiss the Slicer window.

1. To exit the volume window, enter the following at the Command Line:

WDELETE

2. To exit the IDL Slicer, choose the path File → Quit.
Getting Started with IDL Displaying a Surface with the Slicer

110 Chapter 8: Volume Visualization
More Information on Volume Visualization

More information on the SHADE_VOLUME procedure can be found in Chapter 18,
“Plotting Multi-Dimensional Arrays” of Using IDL. Also, see SCALE3,
SHADE_VOLUME, and TV in the IDL Reference Guide.

A complete description of the slicer’s capabilities is beyond the scope of this tutorial.
Click the Slicer’s Help button or see SLICER3 in the IDL Reference Guide for more
information.
More Information on Volume Visualization Getting Started with IDL

Chapter 9:

Mapping
This chapter describes the following topics:
IDL and Mapping 112
Drawing Map Projections 113

Drawing an Orthographic Projection 115
Plotting a Portion of the Globe 116

Plotting Data on Maps 117

Reading Latitudes and Longitudes 119
Plotting Contours Over Maps 120

Warping Images to Maps 122
More Information on Mapping 127
Getting Started with IDL 111

112 Chapter 9: Mapping
IDL and Mapping

IDL’s mapping facilities allow you to plot data over different projections of the globe.
This chapter shows how to display various map projections and plot data over them.

In this chapter, we will enter statements at the IDL Command Input Line. This
demonstrates IDL’s interactive capability, and shows how easy it is to manipulate
your data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Mapping Getting Started with IDL

Chapter 9: Mapping 113
Drawing Map Projections

Drawing continental outlines and plotting data in different projections is easy using
IDL’s mapping routines. The MAP_SET routine is the heart of the mapping package.
It controls the type of projection and the limits of the global region to be mapped.

1. Reset the graphics window to default size:

WINDOW

2. Display a cylindrical projection map of the world:

MAP_SET,/CYLINDRICAL,/GRID,/CONTINENTS,/LABEL

The CYLINDRICAL keyword tells MAP_SET to use the cylindrical
projection. The GRID keyword causes the latitude and longitude lines to be
drawn. The LABEL keyword adds the latitude and longitude labels. The
CONTINENTS keyword tells MAP_SET to draw continental outlines.

A similar map could be created by entering a series of separate commands to
set up the type of projection, draw the continent outlines, and then draw the
grid lines.

Although the single-line MAP_SET command is quicker to enter, by using the
separate MAP_SET, MAP_GRID, and MAP_CONTINENTS commands, you
exercise more control over the map colors, fills, and so on.

Figure 9-1: A cylindrical projection
Getting Started with IDL Drawing Map Projections

114 Chapter 9: Mapping
3. Load a new color table.

LOADCT,39

4. Display a Miller cylindrical projection of the world.

MAP_SET,/MILLER

5. Draw the continent outlines. The FILL keyword fills in the continents using
the color specified by the COLOR keyword.

MAP_CONTINENTS,COLOR=220,/FILL

6. Draw the grid lines. The COLOR keyword specifies the color of the grid lines.
The LABEL keyword labels the lines.

MAP_GRID,COLOR=160,/LABEL

The order of MAP_GRID and MAP_CONTINENTS depends on how you
wish to display your map. In the above example, if you call MAP_GRID
before MAP_CONTINENTS, the filled continents are drawn over the labeled
grid lines.

7. Dismiss the graphics window:

WDELETE

Figure 9-2: Miller cylindrical projection with MAP_CONTINENTS and
MAP_GRID
Drawing Map Projections Getting Started with IDL

Chapter 9: Mapping 115
Drawing an Orthographic Projection

To draw a map that looks more like a globe, use the orthographic projection.

1. Open a graphics window for viewing:

WINDOW

2. Enter the following at the Command Line:

MAP_SET,30,-100,0,/ORTHOGRAPHIC,/ISOTROPIC,/GRID, $
/CONTINENTS,/LABEL,/HORIZON

The numbers following the MAP_SET command (30, -100, and 0) are the
latitude and longitude to be centered and the angle of rotation for the North
direction. The ISOTROPIC keyword creates a map that has the same scale in
the vertical and horizontal directions, so we get a circular map in a rectangular
window. IDL keywords (but not function and procedure names) can always be
abbreviated to their minimum unique length. The GRID, COLOR, and LABEL
keywords work the same as before. The HORIZON keyword draws the line at
which the horizon exists. Without the HORIZON keyword, MAP_SET only
draws the grid and the continents.

3. Dismiss the graphics window:

WDELETE

Figure 9-3: Orthographic projection showing North America at the center
Getting Started with IDL Drawing an Orthographic Projection

116 Chapter 9: Mapping

P

Plotting a Portion of the Globe

You do not always have to plot the entire globe, you can plot a section of the globe by
using the LIMIT keyword which specifies a region of the globe to plot.

1. Open a graphics window for viewing:

WINDOW

2. Enter the following at the Command Line:

MAP_SET,32,-100,/AZIM,LIMIT=[10, -130, 55, -70], $
/GRID,/CONT,/LABEL

The azimuthal equidistant projection shows the United States and Mexico. The
AZIM keyword selects the azimuthal equidistant projection. The keyword
LIMIT is set equal to a four-element vector containing the minimum latitude,
minimum longitude, maximum latitude, and maximum longitude.

3. Dismiss the graphics window:

WDELETE

Figure 9-4: Azimuthal equidistant projection
lotting a Portion of the Globe Getting Started with IDL

Chapter 9: Mapping 117
Plotting Data on Maps

You can annotate plots easily in IDL. To plot the location of selected cities in North
America, as shown in the following figure, you need to create three arrays: one to
hold latitudes, one to hold longitudes, and one to hold the names of the cities being
plotted.

1. Open a graphics window for viewing:

WINDOW

2. Create a 5-element array of floating-point values representing latitudes in
degrees North of zero.

LATS=[40.02,34.00,38.55,48.25,17.29]

3. The values in LONS are negative because they represent degrees West of zero
longitude.

LONS=[-105.16,-119.40,-77.00,-114.21,-88.10]

4. Create a five-element array of string values. Text strings can be enclosed in
either single quotes ('text') or double quotes ("text").

CITIES=['Boulder, CO','Santa Cruz, CA',$
'Washington, DC','Whitefish, MT','Belize, Belize']

5. Draw a Mercator projection featuring the United States and Mexico.

MAP_SET,/MERCATOR,/GRID,/CONTINENT,LIMIT=[10,-130,60,-70]

6. Place a plotting symbol at the location of each city.

PLOTS,LONS,LATS,PSYM=4,SYMSIZE=1.4,COLOR=220
Getting Started with IDL Plotting Data on Maps

118 Chapter 9: Mapping
7. Place the names of the cities near their respective symbols.

XYOUTS,LONS,LATS,CITIES,COLOR=80, $
CHARTHICK=2,CHARSIZE=1.25,ALIGN=0.5

The PSYM keyword makes PLOTS use diamond-shaped plotting symbols instead of
connecting lines. The SYMSIZE keyword controls the size of the plotting symbols.
XYOUTS draws the characters for each element of the array CITIES at the
corresponding location specified by the array elements of LONS and LATS. The
CHARTHICK keyword controls the thickness of the text characters and the
CHARSIZE keyword controls their size (1.0 is the default size). Setting the ALIGN
keyword to 0.5 centers the city names over their corresponding data points.

Figure 9-5: Annotating a map projection
Plotting Data on Maps Getting Started with IDL

Chapter 9: Mapping 119
Reading Latitudes and Longitudes

If a map projection is displayed, IDL can return the position of the cursor over the
map in latitude and longitude coordinates.

1. Enter the command:

CURSOR, LON, LAT & PRINT, LAT, LON

The CURSOR command reads the “X” and “Y” positions of the cursor when the
mouse button is pressed and returns those values in the LON and LAT variables. Use
the mouse to move the cursor over the map window and click on any point. The
latitude and longitude of that point on the map are printed in the Output Log.

2. When you are finished with your map, dismiss the graphics window:

WDELETE
Getting Started with IDL Reading Latitudes and Longitudes

120 Chapter 9: Mapping
Plotting Contours Over Maps

Contour plots can easily be drawn over map projections by using the OVERPLOT
keyword to the CONTOUR routine. See the map in the figure below. Enter the
following at the Command Line:

1. Open a graphics window for viewing:

WINDOW

2. Create a dataset to plot:

A=DIST(91)

3. Create an X value vector containing 91 values that range from -90 to 90 in 2
degree increments:

LAT=FINDGEN(91)*2-90

4. Create a Y value vector containing 91 values that range from -180 to 180 in 4
degree increments:

LON=FINDGEN(91)*4-180

5. Create a new sinusoidal map projection over which to plot the data:

MAP_SET,/GRID,/CONTINENTS,/SINUSOIDAL,/HORIZON

6. Draw a twelve-level contour plot of array A over the map:

CONTOUR,A,LON,LAT,/OVERPLOT,NLEVELS=12
Plotting Contours Over Maps Getting Started with IDL

Chapter 9: Mapping 121
Since latitudes range from -90 to 90 degrees and longitudes range from -180 to 180
degrees, you created two vectors containing the “X” and “Y” values for CONTOUR
to use in displaying the array A. If the X and Y values are not explicitly specified,
CONTOUR will plot the array A over only a small portion of the globe.

7. When you are finished with the map, dismiss the graphics window:

WDELETE

Figure 9-6: Plotting contours over maps
Getting Started with IDL Plotting Contours Over Maps

122 Chapter 9: Mapping
Warping Images to Maps

Image data can also be displayed on maps. The MAP_IMAGE function returns a
warped version of an original image that can be displayed over a map projection. In
this example, elevation data for the entire globe is displayed as an image with
continent outlines and grid lines overlaid.

1. Define the template for the file worldelv.dat. This file contains a 360 by 360
square array of byte values.

WORLDTEMPLATE=BINARY_TEMPLATE(FILEPATH('worldelv.dat', $
SUBDIR=['examples', 'data']))

2. When the binary template dialog box appears, name the template
“WORLDTEMPLATE” and then click New Field.

3. In the New Field dialog, enter “W” for the Field Name, be sure to specify that
you have two dimensions and that the field sizes are 360 and 360.

4. Also select Byte (unsigned) in the Type field. Now click OK in the New Field
dialog. Click “OK” to close the binary template dialog as well. Next, read the
file by entering:

WORLDELV_BINARY=READ_BINARY(FILEPATH('worldelv.dat', $
SUBDIR=['examples', 'data']),TEMPLATE=WORLDTEMPLATE)

5. Load a color table.

loadct, 26

6. View the data as an image.

TV, WORLDELV_BINARY.W
Warping Images to Maps Getting Started with IDL

Chapter 9: Mapping 123
The first column of data in this image corresponds to 0 degrees longitude.
Because MAP_IMAGE assumes that the first column of the image being
warped corresponds to -180 degrees, we’ll use the SHIFT function on the
dataset before proceeding.

7. Shift the array 180 elements in the row direction and 0 elements in the column
direction to make -180 degrees the first column in the array.

WORLDELV_BINARY.W=SHIFT(WORLDELV_BINARY.W, 180, 0)

8. View the data as an image.

TV, WORLDELV_BINARY.W

Figure 9-7: worldelv.dat visualized with TV
Getting Started with IDL Warping Images to Maps

124 Chapter 9: Mapping
From the image contained in the data, we can create a warped image to fit any
of the available map projections. A map projection must be defined before
using MAP_IMAGE, because MAP_IMAGE uses the currently defined map
parameters.

9. Create a Mollweide projection with continents and gridlines.

MAP_SET,/MOLLWEIDE,/CONT,/GRID,COLOR=100

10. Warp the image using bilinear interpolation and save the result in the variable
new.

NEW=MAP_IMAGE(WORLDELV_BINARY.W,SX,SY,/BILIN)

The SX and SY in the command above are output variables that contain the X
and Y position at which the image should be displayed. Setting the BILIN
keyword causes bilinear interpolation to be used, resulting in a smoother
warped image.

11. Display the new image over the map:

TV,NEW,SX,SY

Figure 9-8: Shifting the array
Warping Images to Maps Getting Started with IDL

Chapter 9: Mapping 125
The SX and SY variables provide TV with the proper starting coordinates for
the warped image. TV usually displays images starting at position (0, 0). See
the map in the previous figure. Note that the warped image gets displayed over
the existing continent and grid lines.

12. The continent outlines and thick grid lines can be displayed, as shown next, by
entering:

MAP_CONTINENTS
MAP_GRID,GLINETHICK=3

Figure 9-9: Warping an image to a map
Getting Started with IDL Warping Images to Maps

126 Chapter 9: Mapping
Figure 9-10: Showing gridlines and continents
Warping Images to Maps Getting Started with IDL

Chapter 9: Mapping 127
More Information on Mapping

More information on the IDL mapping routines can be found in Using IDL and in the
IDL Reference Guide.
Getting Started with IDL More Information on Mapping

128 Chapter 9: Mapping
More Information on Mapping Getting Started with IDL

Chapter 10:

Plotting Irregularly-
Gridded Data
This chapter describes the following topics:
IDL and Plotting Irregularly-Gridded Data 130
Creating a Dataset 131

The TRIANGULATE Procedure 133

Plotting the Results with TRIGRID 135
More Information on Gridding 137
Getting Started with IDL 129

130 Chapter 10: Plotting Irregularly-Gridded Data
IDL and Plotting Irregularly-Gridded Data

IDL can be used to display and analyze irregularly-gridded data. IDL routines allow
you to easily fit irregularly-sampled data to a regular grid. This regularly-gridded
data can then be sent to IDL’s plotting routines. In this chapter, we will see how easy
it is to manipulate your irregularly-gridded data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Plotting Irregularly-Gridded Data Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 131
Creating a Dataset

Create a set of 32 irregularly-gridded data points in 3-D space that we can use as
arguments to the TRIGRID and TRIANGULATE functions.

1. Open a window for viewing:

WINDOW

2. Set SEED to the longword value 1. SEED is used to generate random points.

SEED=1L

3. Set the number of points to be randomly generated.

N=32

4. Create a set of X values for each of the 32 data points.

X=RANDOMU(SEED,N)

5. Create a set of Y values for each of the 32 data points.

Y=RANDOMU(SEED,N)

6. Create a set of Z values for each of the 32 data points from the X and Y values.

Z=EXP(-3*((X-0.5)^2+(Y-0.5)^2))
Getting Started with IDL Creating a Dataset

132 Chapter 10: Plotting Irregularly-Gridded Data
7. Plot the XY positions of the random points.

PLOT,X,Y,PSYM=1,TITLE='Random XY Points'

8. Dismiss the graphics window:

WDELETE

Figure 10-1: Plot of random values
Creating a Dataset Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 133
The TRIANGULATE Procedure

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar set
of points. After a triangulation has been found for a set of irregularly-gridded data
points, the TRIGRID function can be used to interpolate surface values to a regular
grid.

1. Open a window for viewing:

WINDOW

2. To return a triangulation in the variable TR, enter the command:

TRIANGULATE,X,Y,TR

The variable TR now contains a three-element by 54-element longword array
(you may see this by typing “Help, TR” at the IDL Command Line).

Note
This is not always a 54-element array, it may vary based on the number of points.

3. To produce a plot of the triangulation, shown below, enter the following
commands:

PLOT,X,Y,PSYM=1,TITLE='Triangulation'

FOR i=0,N_ELEMENTS(TR)/3 - 1 DO BEGIN & T= $
[TR[*, i],TR[0, i]] & PLOTS,X[T],Y[T] & ENDFOR
Getting Started with IDL The TRIANGULATE Procedure

134 Chapter 10: Plotting Irregularly-Gridded Data
4. Dismiss the graphics window

WDELETE

Figure 10-2: The triangulation of the random values
The TRIANGULATE Procedure Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 135
Plotting the Results with TRIGRID

Now that we have the triangulation TR, the TRIGRID function can be used to return
a regular grid of interpolated Z values.

1. Display a surface plot of the gridded data by passing the result of the
TRIGRID function to SURFACE, using the default interpolation technique
and add a title to the plot, shown below, by entering:

SURFACE,TRIGRID(X,Y,Z,TR)
XYOUTS,.5,.9,'Linear Interpolation',ALIGN=.5,/NORMAL

The TRIGRID function can also return a smoothed interpolation. Set the
QUINTIC keyword to use a quintic polynomial method when interpolating the
grid.

Figure 10-3: Linear interpolation of triangulated data
Getting Started with IDL Plotting the Results with TRIGRID

136 Chapter 10: Plotting Irregularly-Gridded Data
2. Display the results of the quintic gridding method, shown below, by entering:

SURFACE,TRIGRID(X,Y,Z,TR,/QUINTIC XYOUTS, .5,.9,’Quintic
Interpolation',ALIGN=.5,/NORMAL

Figure 10-4: Quintic interpolation of triangulated data
Plotting the Results with TRIGRID Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 137
More Information on Gridding

More information on the TRIGRID and TRIANGULATE routines as well as other
triangulation routines, can be found in the IDL Reference Guide.
Getting Started with IDL More Information on Gridding

138 Chapter 10: Plotting Irregularly-Gridded Data
More Information on Gridding Getting Started with IDL

Chapter 11:

Animation
This chapter describes the following topics:
IDL and Animation 140
Animating a Series of Images 141

Displaying an Animation as a Wire Mesh . 143

Animation with XINTERANIMATE 146
Cleaning Up the Animation Windows . . . 148

More Information on Animation 149
Getting Started with IDL 139

140 Chapter 11: Animation
IDL and Animation

IDL can help you visualize your data dynamically by using animation. An animation
is just a series of still frames shown sequentially. In IDL, a series of frames can be
represented by a 3-D array (for example, a 3-D array could hold forty, 300 pixel by
300 pixel images). This chapter shows you how to create an array of images and play
them back as an animated sequence.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Animation Getting Started with IDL

Chapter 11: Animation 141
Animating a Series of Images

To create an animation that shows a series of images that represent an abnormal
heartbeat, first read in the images to be displayed. The file holds 16 images of a
human heart as 64 by 64 element arrays of bytes.

1. Enter the following commands at the IDL Command Line:

HEARTTEMPLATE=BINARY_TEMPLATE(FILEPATH('abnorm.dat',$
SUBDIR=['examples', 'data']))

2. When the binary template dialog box appears, name the template “Animation”
and then click New Field.

3. Enter “H” for the Field Name, be sure to specify that you have three
dimensions and that the sizes are 64, 64 and 16.

4. Also select Byte in the Type field. Now click OK for both open dialogs.

5. Next, read the images into variable HEART_BINARY:

HEART_BINARY=READ_BINARY(FILEPATH('abnorm.dat',SUBDIR= $
['examples', 'data']), TEMPLATE=HEARTTEMPLATE)

6. Load an appropriate color table:

LOADCT, 3

7. Display the first “slice” of our 3-D array:

TV,HEART_BINARY.H[*, *, 0]

The asterisks (*) in the first two element positions tell IDL to use all of the
elements in those positions. Hence, the TV procedure displays a 64 by 64 byte
image. The image is rather small.

8. Now resize each image in the array with bilinear interpolation by entering:

H=REBIN(HEART_BINARY.H,320,320,16)

9. Then display:

TV,H[*, *, 0]

Each image in H is 5 times its previous size.

Now a simple FOR statement can be used to “animate” the images. (A more
robust and convenient animation routine, XINTERANIMATE, is described
next.)

10. To animate, enter:
Getting Started with IDL Animating a Series of Images

142 Chapter 11: Animation
FOR I=0,15 DO TVSCL,H[*,*,i]

IDL displays the 16 images in the array H sequentially. To repeat the animation, press
the “up arrow” key to recall the command and press enter.

Note
If the IDLDE screen covers and existing IDL window, you may want to delete the
current IDL window before recalling the FOR statement in order to clearly see the
animation.

11. Dismiss the window:

WDELETE

Figure 11-1: Representation of an abnormal heartbeat
Animating a Series of Images Getting Started with IDL

Chapter 11: Animation 143
Displaying an Animation as a Wire Mesh

The same series of images can be displayed as different types of animations. For
example, each frame of the animation could be displayed as a SURFACE plot.

1. Create a new array to hold the heartbeat data:

S=REBIN(HEART_BINARY.H,32,32,16)

S now holds 32 byte by 32 byte versions of the heartbeat images. SURFACE
plots are often more legible when made from a resized version of the dataset
with fewer data points in it.

2. Display the first image in S, as a wire-mesh surface by entering:

SURFACE,S[*,*,0]

Now create a whole series of SURFACE plots, one for each image in the
original dataset.

3. To do this, first create a three-dimensional array to hold all of the images by
entering:

FRAMES=BYTARR(300,300,16)

The variable frames will hold sixteen, 300 by 300 byte images.

Figure 11-2: Surface visualization of heartbeat data
Getting Started with IDL Displaying an Animation as a Wire Mesh

144 Chapter 11: Animation
4. Now create a 300 by 300 pixel window in which to display the images:

WINDOW,1,TITLE='IDL Animation',xsize=300,ysize=300

A blank IDL Animation screen will appear.

The next command will draw each frame of the animation. A SURFACE plot
is drawn in the window and then the TVRD function is used to read the image
from the plotting window into the frames array. The FOR loop is used to
increment the array indices. The lines which follow are actually a single IDL
command. The dollar sign ($) works as a continuation character in IDL and the
ampersand (&) allows multiple commands in the same line.

5. Enter:

FOR I=0,15 DO BEGIN SURFACE,S[*,*,i],ZRANGE=[0,250]$
& FRAMES[0,0,i]=TVRD()&END

You should see a series of SURFACE plots being drawn in the animation
window, as shown in below. The ZRANGE keyword is used to keep the
“height” axis the same for each plot.

6. Now display the new images in series by entering:

FOR I=0,15 DO TV,FRAMES[*,*,i]

Figure 11-3: One of the SURFACE plots of the animation window
Displaying an Animation as a Wire Mesh Getting Started with IDL

Chapter 11: Animation 145
Note
Once again, if the IDLDE screen covers and existing IDL window, you may want to
delete the current IDL window before recalling the FOR statement in order to clearly
see the animation.
Getting Started with IDL Displaying an Animation as a Wire Mesh

146 Chapter 11: Animation
Animation with XINTERANIMATE

IDL includes a powerful, widget-based animation tool called XINTERANIMATE.
Sometimes it is useful to view a single wire-mesh surface or shaded surface from a
number of different angles. Let’s make a SURFACE plot from one of the S dataset
frames and view it rotating through 360 degrees. by entering:

1. Save the first frame of the S dataset in the variable A to simplify the next set of
commands:

A=S[*,*,0]

2. Create a window in which to display your surface:

WINDOW,0,XSIZE=300,YSIZE=300

3. Display A as a wire-mesh surface:

SURFACE,A,XSTYLE=4,YSTYLE=4,ZSTYLE=4

Setting the XSTYLE, YSTYLE, and ZSTYLE keywords equal to 4 turns axis
drawing off. Usually, IDL automatically scales the axes of plots to best display
all of the data points sent to the plotting routine. However, for this sequence of
images, it is best if each SURFACE plot is drawn with the same size axes. The
SCALE3 procedure can be used to control various aspects of the three-
dimensional transformation used to display plots.

4. Force the X and Y axis ranges to run from 0 to 32 and the Z axis range to run
from 0 to 250:

SCALE3,XRANGE=[0,31],YRANGE=[0,31],ZRANGE=[0,250]

5. Set up the XINTERANIMATE routine to hold 40, 300 by 300 byte images:

XINTERANIMATE,SET=[300,300,40],/SHOWLOAD

6. Return focus to the plot window for the SURFACE calls which follow.

WSET, 0

7. Generate each frame of the animation and store it for the XINTERANIMATE
routine. Once a 3-D transformation has been established, most IDL plotting
routines can be made to use it by including the T3D keyword. The
[XYZ]STYLE keywords are shortened to [XYZ]ST:

FOR I=0,39 DO BEGIN SCALE3,AZ= -i * 9 & SURFACE,A, $
/T3D,XSTYLE=4,YSTYLE=4,ZSTYLE=4 & XINTERANIMATE,$
FRAME=I,WIN=0 & END
Animation with XINTERANIMATE Getting Started with IDL

Chapter 11: Animation 147
8. Play images back as an animation after all the images have been saved in the
XINTERANIMATE routine:

XINTERANIMATE

The XINTERANIMATE window should appear, as shown above. “Tape recorder”
style controls can be used to play the animation forward, play it backward, or stop.
Individual frames can also be selected by moving the “Animation Frame” slider. The
“Options” menu controls the style and direction of image playback. Click on “End
Animation” when you are ready to return to the IDL Command Line.

Figure 11-4: The XINTERANIMATE window
Getting Started with IDL Animation with XINTERANIMATE

148 Chapter 11: Animation
Cleaning Up the Animation Windows

Before continuing with the rest of the tutorials, delete the two windows you used to
create the animations. The WDELETE procedure is used to delete IDL windows.

1. Delete both window 0 and window 1 by entering:

WDELETE, 0
WDELETE, 1
Cleaning Up the Animation Windows Getting Started with IDL

Chapter 11: Animation 149
More Information on Animation

With just a few IDL commands, you’ve created a number of different types of
animation. For a list of other animation related commands, see the IDL Reference
Guide.
Getting Started with IDL More Information on Animation

150 Chapter 11: Animation
More Information on Animation Getting Started with IDL

Chapter 12:

Programming in IDL
This chapter describes the following topics:
IDL and Programming 152
Programming Capabilities in the IDLDE . 153

Executing a Simple IDL Example Program 155

Debugging Tools in IDL 158
Using IDL Projects 160

More Information on IDL Programming . 162
Getting Started with IDL 151

152 Chapter 12: Programming in IDL
IDL and Programming

IDL has a complete set of program control statements to write sophisticated programs
and applications. These control statements are similar to, if not identical to, those
found in other programming languages. This chapter demonstrates just some of IDL’s
basic programming capabilities.

Note
For best performance when using these examples, create a bitmap buffer for your
graphic windows and to use a maximum of 256 colors by entering the following
command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL and Programming Getting Started with IDL

Chapter 12: Programming in IDL 153
Programming Capabilities in the IDLDE

IDL offers you the ability to program applications with ease. The term “IDL
Application” is used very broadly; any program written in the IDL language is treated
as an IDL application. IDL applications range from the very simple (a MAIN
program entered at the IDL command line, for example) to the very complex (large
programs with graphical user interfaces). Whether you are writing a small program to
analyze a single data set or a large-scale application for commercial distribution, it is
useful to understand the programming concepts used by the IDL language. IDL even
allows you to call IDL from other programs written in other languages and call other
programs from IDL.

Built-In Editor

The IDL Editor is a programmer’s-style editor—if you indent a line using the Tab
key, the following lines will be indented as well. Use the Shift-Tab key to move left
one tab stop. You can move the cursor position within an IDL Editor window using
either the mouse or the keyboard. IDL Editor window key definitions are listed in
Using IDL.

Chromacoded editor

On IDL for Windows, the IDL Editor supports chromacoding—different types of
IDL statements appear in different colors. By default, the IDL Editor uses chroma-
coding. The Editor tab from Preferences in the File menu displays the colors used
for different words recognized by IDL. Change the Foreground color to change the
color of the word itself. Highlight the word by specifying the Background color.

Types of IDL Programs

Main Program

A main program unit consists of a sequence of IDL statements that end in an END
statement. Only one main program unit may exist in IDL at any time. All commands
(except executive statements) that can be entered at the IDL Command Line can also
be contained in an IDL program.

Procedure

A procedure is a self-contained sequence of IDL statements that performs a well-
defined task. A procedure is identified by a procedure definition statement where the
Getting Started with IDL Programming Capabilities in the IDLDE

154 Chapter 12: Programming in IDL
procedure name is the name of the IDL statement you are creating and the parameters
are named variables that are used in the procedure.

Function

A function is a self-contained sequence of IDL statements that performs a well-
defined task and returns a value to the calling program unit when it is executed. All
functions return a function value which is given as a parameter in the RETURN
statement used to exit the function.

Compound Statements

• BEGIN...END

Conditional Statements

• IF ... THEN ... ELSE

• CASE

• SWITCH

Loop Statements

• FOR...DO

• WHILE...DO

• REPEAT...UNTIL

Jump Statements

• BREAK

• CONTINUE

• GOTO

Note
For more information about these IDL statements, see Chapter 12, “Program
Control” in Building IDL Applications.
Programming Capabilities in the IDLDE Getting Started with IDL

Chapter 12: Programming in IDL 155
Executing a Simple IDL Example Program

To show IDL’s programming capabilities, enter a program here which will remove
the bridges from the image of Manhattan Island in New York City using IDL’s
erosion and dilation power.

1. From the IDLDE, open a new IDL Editor window by selecting File → New →
Editor (or for Macintosh, simply File → New).

2. Type (or copy) the following lines of code into the new Editor window to form
a program:

pro remove_bridges
;
;Read an image of New York.
xsize = 768 ; pixels.
ysize = 512 ; pixels.
img = read_binary($

filepath('nyny.dat', subdir=['examples', 'data']), $
data_dims=[xsize, ysize])

;
;Increase image's contrast.
img = bytscl(img)
;
;Create an image mask from thresholded image.
threshold_level = 70 ; determined empirically.
mask = img lt threshold_level
;
;Make a disk-shaped "structuring element."
disk_size = 7 ; determined empirically.
se = shift(dist(disk_size), disk_size / 2, disk_size / 2)
se = se le disk_size / 2
;
;Remove details in the mask's shape.
mask = dilate(erode(mask, se), se)
;
;Fuse gaps in the mask's shape.
mask = erode(dilate(mask, se), se)
;
;Remove all but the largest region in the mask.
label_img = label_region(mask)
labels = label_img[where(label_img ne 0)] ; Remove
background.
label = where(histogram(label_img) eq max(histogram(labels)))
mask = label_img eq label[0]
;
;Generate a new image consisting of local area minimums.
new_img = dilate(erode(img, se, /gray), se, /gray)
Getting Started with IDL Executing a Simple IDL Example Program

156 Chapter 12: Programming in IDL
;
;Replace new image with original image, where not masked.
new_img[where(mask eq 0)] = img[where(mask eq 0)]
;
;View result, comparing the new image with the original.
print, 'Hit any key to end program.'
window, xsize=xsize, ysize=ysize
flick, img, new_img
wdelete
end

Note
Semicolons (;) in IDL code are indicators of the beginning of comment lines, which
explain what the actual code lines are doing and/or to help you understand your
code (while being ignored by IDL itself).

Note
The dollar sign ($) at the end of the first line is the IDL continuation character. It
allows you to enter long IDL commands as multiple lines.

Note
For the current settings for the various colors represented in the chromacoded editor
go to File → Preferences and then select the Editor tab (on Macintosh, select File
→ Preferences → Syntax Coloring.

Saving, Compiling and Running your Program

Now to see the program in action, IDL requires a few more simple steps.

1. Save the file as remove_bridges.pro by selecting File → Save As and then
entering “remove_bridges.pro”.

2. Compile the program by selecting Run → Compile remove_bridges.pro (or
on Macintosh, simply Run → Compile).
Executing a Simple IDL Example Program Getting Started with IDL

Chapter 12: Programming in IDL 157
3. Run the program by selecting Run → Run remove_bridges.pro (or for
Macintosh, simply Run → Run). You’ll see the following:

Note
If your program encounters an error in running be sure to double check your code
for typographical errors.

Figure 12-1: Running your IDL Program
Getting Started with IDL Executing a Simple IDL Example Program

158 Chapter 12: Programming in IDL
Debugging Tools in IDL

Many features are included to help you debug your IDL programs. These features are
discussed in the following sections:

Breakpoints

This allows you to set points in your program to stop the execution of the program.
You can then check the value of variables at those points to see what is happening in
your program and then continue execution of the program.

Variable Watch window

This window displays current variable values after IDL has completed execution. If
the calling context changes during execution — as when stepping into a procedure or
function — the variable table is replaced with a table appropriate to the new context.

While IDL is at the main program level, the Watch window remains active and
displays any variables created.

Figure 12-2: Complex Breakpoint Dialog

Figure 12-3: Variable Watch Window
Debugging Tools in IDL Getting Started with IDL

Chapter 12: Programming in IDL 159
The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within a file.

Figure 12-4: Profile Dialog
Getting Started with IDL Debugging Tools in IDL

160 Chapter 12: Programming in IDL
Using IDL Projects

IDL Projects allow you to easily develop applications in IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop your
IDL application. All of your application files can be organized so that they are easier
to access and easier to export to other developers, colleagues, or users.

Access to all Files in Your Application

IDL Projects have an easy to use interface for grouping:

• IDL source code files (.pro)

• GUI files (.prc) created with the IDL GUIBuilder

• Data files (ASCII text or binary)

• Image files (.tif, .jpg, .bmp, etc.)

Figure 12-5: Projects Window for Macintosh (upper right)
and Windows (upper left)
Using IDL Projects Getting Started with IDL

Chapter 12: Programming in IDL 161
• Other files (help files, .sav files, etc.)

After you add all of your files to your project, you can simply double click on .pro
files to open them in the IDL editor or .prc files to open them in the IDL
GUIBuilder.

Working with Files in Your Project

IDL projects makes it easy to add, remove, move, edit, compile, and test files in your
project.

All of your workspace information is saved as well. If you save and exit your project
with the files you are working on open, when you open your project, those same files
will be opened automatically for you.

IDL projects also store breakpoint information. There is no need to reset breakpoints
every time you open the project.

Compiling and Running Your Application

Compiling and running applications is fast and easy. You can compile all of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled and
run by specifying options for your project.

Building Distributions

Once you have completed your application, you can quickly and easily create a
distribution. If you have purchased the IDL Developer’s Kit, your application is
automatically licensed for distribution.

Exporting Your Applications

You can easily move your application to another platform or distribute your source
code to colleagues by exporting your project. All your source code, GUI files, data
files, and image files are copied to a directory you specify. You also have the option
of creating an IDL Run Time distribution with your application.
Getting Started with IDL Using IDL Projects

162 Chapter 12: Programming in IDL
More Information on IDL Programming

For more information on programming in IDL, see the Building IDL Applications
manual. Also see the documentation for specific routines in the IDL Reference Guide.
More Information on IDL Programming Getting Started with IDL

Chapter 13:

Manipulating Data
This chapter describes the following topics:
IDL and Manipulating Data 164
IDL Array Routines 165

Array Processing Capabilities 168
More Information on Manipulating Data . 171
Getting Started with IDL 163

164 Chapter 13: Manipulating Data
IDL and Manipulating Data

IDL has been specifically designed to process arrays easily and naturally. You can get
excellent performance in your applications by using the built-in array processing
routines instead of other methods like FOR loops. This chapter will show how easy it
is to manipulate your data using IDL’s capabilities.
IDL and Manipulating Data Getting Started with IDL

Chapter 13: Manipulating Data 165
IDL Array Routines

The following tables describe some of the array processing procedures and functions
that are included in IDL.

Array Creation Routines

Array Name Array Function

BINDGEN Return a byte array with each element set to its subscript

BYTARR Create a byte vector or array

CINDGEN Returns complex array with each element set to its subscript

COMPLEXARR Returns complex, single-precision, floating-point vector or
array

DBLARR Return a double-precision array

DCINDGEN Return a double-precision, complex array with each element
set to its subscript

DCOMPLEXARR Return a double-precision, complex vector or array

DINDGEN Return a double-precision array with each element set to its
subscript

FINDGEN Return a floating-point array with each element set to its
subscript

FLTARR Return a floating-point vector or array

IDENTITY Return an identity array

INDGEN Return an integer array with each element set to its subscript

INTARR Return an integer vector or array

LINDGEN Return a longword integer array with each element set to its
subscript

LONARR Return a longword integer vector or array

MAKE_ARRAY General purpose array creation

Table 13-1: Array Creation Routines
Getting Started with IDL IDL Array Routines

166 Chapter 13: Manipulating Data
Array Manipulation Routines

Array and Image Processing Routines

OBJARR Create an array of object references

PTRARR Create an array of pointers

REPLICATE Form array of given dimensions filled with a value

SINDGEN Return a string array with each element set to its subscript

STRARR Return a string vector or array

Array Name Array Function

INVERT Compute inverse of a square array

REFORM Change array dimensions without changing contents

REVERSE Reverse vectors or arrays

ROT Rotate array by any amount

ROTATE Rotate array by multiples of 90 degrees and/or transpose

SHIFT Shift array elements

SORT Sort array contents and return vector of indices

TRANSPOSE Transpose array

Table 13-2: Array Manipulation Routines

Array Name Array Function

CONGRID Resample image to any dimensions

INVERT Compute inverse of a square array

MAX Return the maximum element of an array

Table 13-3: Array and Image Processing Routines

Array Name Array Function

Table 13-1: Array Creation Routines
IDL Array Routines Getting Started with IDL

Chapter 13: Manipulating Data 167
MEDIAN Median function and filter

MIN Return the minimum element of an array

REBIN Resample array by integer multiples

REFORM Change array dimensions without changing contents

REVERSE Reverse vectors or arrays

ROT Rotate array by any amount

ROTATE Rotate array by multiples of 90 degrees and/or transpose

SHIFT Shift array elements

SIZE Return array size and type information

SORT Sort array contents and return vector of indices

TOTAL Sum array elements

TRANSPOSE Transpose array

WHERE Return subscripts of non-zero array elements

Array Name Array Function

Table 13-3: Array and Image Processing Routines
Getting Started with IDL IDL Array Routines

168 Chapter 13: Manipulating Data
Array Processing Capabilities

Programs with array expressions run faster than programs with scalars, loops, and IF
statements. Some examples of slow and fast ways to achieve the same results follow.

Example— Avoiding IF Statements by Summing Elements

The first example adds all positive elements of array B to array A.

• Using a loop will be slow:

FOR I=0,(N-1)DO IF B[I]GT 0 THEN A[I]=A[I] + B[I]

• Fast way: Mask out negative elements using array operations.

A=A + (B GT 0) * B

• Faster way: Add B > 0

A=A + (B > 0)

When an IF statement appears in the middle of a loop with each element of an
array in the conditional, the loop can often be eliminated by using logical array
expressions.

Example— Avoiding IF Statements by Using Array Operators
and the WHERE Function

In the example below, each element of C is set to the square-root of A if A[I] is
positive; otherwise, C[I] is set to minus the square-root of the absolute value of A[I].

• Using an IF statement is slow.

FOR I=0,(N-1) DO IF A[I] LE 0 THEN C[I]=-SQRT(-A[I]) ELSE
C[I]=SQRT(A[I])

• Fast way

C = ((A GT 0) * 2 - 1) * SQRT(ABS(A))

The expression (A GT 0) has the value 1 if A[I] is positive and has the value
0 if A[I] is not. (A GT 0)* 2 - 1 is equal to +1 if A[I] is positive or -1 if
A[I] is negative, accomplishing the desired result without resorting to loops or
IF statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

• Get subscripts of negative elements.
Array Processing Capabilities Getting Started with IDL

Chapter 13: Manipulating Data 169

Ge
NEGS=WHERE(A LT 0)

• Take root of absolute value.

C = SQRT(ABS(A))

• Negate elements in C corresponding to negative elements in A.

C[negs] = -C[negs]

Example— Using Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array
operations instead of scalar operations in a loop. For example, consider the problem
of flipping a 512 × 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

The following example is for demonstration only. The IDL system variable !ORDER
should be used to control the origin of image devices. The ORDER keyword to the
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

• Temporarily save pixel:

TEMP=IMAGE[I, J]

• Exchange pixel in same column from corresponding row at bottom.

image[I, J] = image[I, 511 - J]
image[I, 511-J] = temp
ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process arrays as
a single entity.

• Enter at the IDL Command Line:

FOR J = 0, 255 DO BEGIN

• Temporarily save current row.

temp = image[*, J]

• Exchange row with corresponding row at bottom.

image[*, J] = image[*, 511-J]
image[*, 511-J] = temp
ENDFOR
tting Started with IDL Array Processing Capabilities

170 Chapter 13: Manipulating Data
At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

• Get a second array to hold inverted copy.

image2 = BYTARR(512, 512)

• Copy the rows from the bottom up.

FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

• Even more efficient is the single line:

image2 = image[*, 511 - INDGEN(512)]

that reverses the array using subscript ranges and array-valued subscripts.

• Finally, using the built-in ROTATE function is quickest of all:

image = ROTATE(image, 7)

This works because inverting the image is equivalent to transposing it and
rotating it 270 degrees clockwise.

Note
Another way to invert the image is to enter:
image = REVERSE(image, 2)
Array Processing Capabilities Getting Started with IDL

Chapter 13: Manipulating Data 171
More Information on Manipulating Data

IDL has many more array processing capabilities than the ones shown in this chapter.
To take advantage of all of IDL’s powerful capabilities in manipulating data, look for
more information in Building IDL Applications.
Getting Started with IDL More Information on Manipulating Data

172 Chapter 13: Manipulating Data
More Information on Manipulating Data Getting Started with IDL

Chapter 14:

Using the IDL
GUIBuilder
This chapter describes the following topics:
What is the IDL GUIBuilder? 174
IDL GUIBuilder Tools 176

Creating an Example Application 177

Widget Types . 187
More Information on the IDL GUIBuilder 189
Getting Started with IDL 173

174 Chapter 14: Using the IDL GUIBuilder
What is the IDL GUIBuilder?

The IDL GUIBuilder is part of the IDLDE for Windows. The IDL GUIBuilder
supplies you with a way to interactively create user interfaces and then generate the
IDL source code that defines that interface and contains the event-handling routine
place holders.

Note
The IDL GUIBuilder is supported on Windows only. However, the code it generates
is portable to other platforms and will run on the same version of IDL or higher.

The IDL GUIBuilder has several tools that simplify application development. These
tools allow you to create the widgets that make up user interfaces, define the behavior
of those widgets, define menus, and create and edit color bitmaps for use in buttons.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layout for
your bases instead of a bulletin board layout. By using a row or column layout,
problems caused by differences in the default spacing and decorations (for example,
beveling) of widgets on each platform can be avoided

Using the IDL GUIBuilder

These are the basic steps you will follow when building an application interface using
the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or
widgets, supplied in the IDL GUIBuilder. Widgets are simple graphical objects
supported by IDL, such as sliders or buttons.

2. Set attribute properties for each widget. The attributes control the display,
initial state, and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to which
it can respond. When you design and create an application, it is up to you to
decide if and how a widget will respond to the events it can generate. The first
step to having a widget respond to an event is to supply an event procedure
name for that event.

4. Save the interface design to an IDL resource file, *.prc file, and generate the
portable IDL source code files. There are two types of generated IDL source
What is the IDL GUIBuilder? Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 175
code: widget definition code (*.pro files) and event-handling code
(*_eventcb.pro files).

5. Modify the generated *_eventcb.pro event-handling code file using the
IDLDE, then compile and run the *.pro code. This code can run on any IDL-
supported platform.

The *_eventcb.pro file contains place holders for all of the event procedures you
defined for the widgets, and you complete the file by filling in the necessary event
callback routines for each procedure.

Warning
Once you have generated the widget definition code (*.pro files), you should not
modify this file manually. If you decide to change your interface definition, you will
need to regenerate the interface code, and will therefore overwrite that *.pro file.
The event handling code will not be overwritten but will instead be appended.

Chapter 24, “Widgets” in Building IDL Applications contains complete information
about IDL widgets, and it describes how to create user interfaces programmatically
(without the IDL GUIBuilder).
Getting Started with IDL What is the IDL GUIBuilder?

176 Chapter 14: Using the IDL GUIBuilder
IDL GUIBuilder Tools

You will use the following tools to design and construct a graphical interface using
the IDL GUIBuilder:

• The IDL GUIBuilder Toolbar, which you use to create the widgets that make
up your interface.

• Widget Properties dialog, which you use to set widget attributes and event
properties.

• Widget Browser, which you can use to see the widget hierarchy and to modify
certain aspects of the widgets in your application.

• The Menu Editor, which you use to define menus to top-level bases and
buttons.

• The Bitmap Editor, which you use to create or modify bitmap images to be
displayed on button widgets.

• The IDLDE to modify, compile, and run the generated code.

Using the IDL GUIBuilder Toolbar

The IDL GUIBuilder has its own toolbar in the IDE, which you use to create the
widgets for your user interface.

Figure 14-1: IDL GUIBuilder Toolbar

Select Cursor

Base Button Radio Button

Checkbox

Text

Label

Vertical Slider ListboxDroplist Draw Area

Table

Horizontal Slider
Tab

Tree
IDL GUIBuilder Tools Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 177
Creating an Example Application

This simple example application contains a menu and a draw widget. When
complete, the running application allows the user to open and display a graphics file
in PNG format, change the color table for the image display, and perform a smooth
operation on the displayed image.

Now let’s create a widget, set widget properties, and write IDL code to handle events:

Defining Menus for the Top-Level Base

To define the menu, follow these steps:

1. Open a new IDL GUIBuilder window by selecting File → New → GUI from
the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

2. Drag out the window so that the top-level base to a reasonable size for
displaying an image.

To view the property values, right-click on the base, and choose Properties
from menu. In the Properties dialog, scroll down to view the X Size and Y
Size property values.

3. Right-click on the top-level base in the IDL GUIBuilder window, then choose
Edit Menu. This action opens the Menu Editor.

4. In the Editor’s Menu Caption field, enter “File” and click Insert. Clicking
Insert sets the entered value and adds a new line after the currently selected
line, and the new line becomes the selected line.

5. To define the File menu items, do the following:

• With the new line selected, click on the right arrow in the Menu Editor,
which indents the line and makes it a menu item.

• Click in the Menu Caption field and enter “Open”.

• Click in the Event Procedure field and enter “OpenFile”. The OpenFile
routine will be called when the user selects this menu.

• To create a separator after the Open menu, click the line button at the right
side of the dialog (above the arrow buttons).

• To set the values and move to a new line, click Insert.

• In the Menu Caption field, enter “Exit”.

• In the Event Procedure field, enter “OnExit”.
Getting Started with IDL Creating an Example Application

178 Chapter 14: Using the IDL GUIBuilder
• To set the values and move to a new line, click Insert.

6. To define the Tools menu and its one item, do the following:

• With the new line selected, click the left arrow to make the line a top-level
menu.

• In the Menu Caption field, enter “Tools”, then click Insert.

• Click the right arrow to make the new line a menu item.

• In the Menu Caption field, enter “Load Color Table”.

• In the Event Procedure field, enter “OnColor”.

• To set the values and move to a new line, click Insert.

7. To define the Analyze menu and its one menu item, do the following:

• With the new line selected, click the left arrow to make the line a top-level
menu.

• In the Menu Caption field, type “Analyze”, then press Enter.

• Click the right arrow to make the new line a menu item.

• In the Menu Caption field, enter “Smooth”.

• In the Event Procedure field, enter “DoSmooth”.

Figure 14-2: Menu Editor Dialog with Example Menus
Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 179
8. Save your menu definitions by clicking OK in the Menu Editor.

9. At this time you can click on the menus to test them.

10. From the IDLDE File menu, choose Save, which opens the “Save As” dialog.

11. In the “Save As” dialog, select a location, enter “example.prc” in the File name
field, and click Save. This action writes the portable resource code to the
specified file.

To create a draw area that will display PNG image files, follow these steps:

1. Click on the Draw Widget tool button (the dark square icon), then drag out an
area that fills the top-level base display area. Leave a small margin around the
edge of the draw area when you drag it out.

2. Right click on the draw area, and choose Properties. This action opens the
Properties dialog for the draw area; the draw widget properties are displayed
in the dialog.

3. In the Properties dialog, click the push pin button (in the top right corner of
the dialog box) so the dialog will stay open and on top.

Note
This Properties dialog floats and is resizeable.

4. In the Properties dialog, change the draw widget Name attribute value to
“Draw”.
Getting Started with IDL Creating an Example Application

180 Chapter 14: Using the IDL GUIBuilder
Later, you will write code to handle the display of the image in this draw area widget.
Renaming the widget now will make it easier to write the code later; the “Draw”
name is easy to remember and to type.

Note
The Name property must be unique to the widget hierarchy.

5. In the IDL GUIBuilder window, click on the top-level base widget to select it.
When you do so, the Properties dialog will update and display the attributes
for this base widget.

6. In the Properties dialog, locate the Component Sizing property, and select
Default from the droplist values. This action sizes the base to the draw widget
size you created.

Figure 14-3: Changing the Name attribute to “Draw”
Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 181
When you first dragged out the size of the base, the Component Sizing
property changed from Default to Explicit—you explicitly sized the widget.
Now that the base widget contains items, you can return it to Default sizing,
and IDL will handle the sizing of this top-level base.

7. From the File menu, choose Save.

Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of
widgets and menus.

To run your application in test mode:

• From the Run menu, choose Test GUI.

This action displays the interface as it will look when it runs.

To exit test mode:

• Press the Esc key or Click the close X in the upper-right corner of the test
application window.

Generating the IDL Code

To generate the code for the example application, follow these steps:

1. From the File menu, choose Generate .pro. This action opens the “Save As”
dialog.

2. In the “Save As” dialog, find the location where you want the files saved, enter
“example.pro” in the File name field, and click Save.

This action generates an example.pro widget definition file and an
example_eventcb.pro event-handling file.

The example.pro file contains the widget definition code, and you should never
modify this file. If you decide later to change your interface, you will need to
regenerate this interface code, and thus overwrite the widget code file.

The example_eventcb.pro contains place holders for all the event procedures you
defined in the IDL GUIBuilder Menu Editor and Properties dialog. You must
complete these event procedures by filling in event callback routines. This file will
only be appended to when new event handlers are added so changes made will not be
lost.
Getting Started with IDL Creating an Example Application

182 Chapter 14: Using the IDL GUIBuilder
Note
You should modify only the generated event-handling file (*_eventcb.pro); you
should never modify the generated interface code (the *.pro file).

Handling the Open File Event

You can now modify the generated example_eventcb.pro file to handle the
events for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the
appropriate event structure is sent, and the OpenFile routine handles the event. For
this application, the Open menu item will launch an Open dialog to allow the user to
choose a PNG file, and then the routine will check the selected file’s type, read the
image, and display it in the draw area.

To open the file and add the code to handle the OpenFile event, follow these steps:

1. From the File menu in the IDLDE, choose Open, which launches the Open
dialog.

2. In the Open dialog, locate and select the example_eventcb.pro file, and
click Open. This file contains the event handling routine place holders, which
you will now complete.

3. In the example_eventcb.pro file, locate the OpenFile procedure, which
looks like this:

pro OpenFile, Event

end

Tip
To easily find the OpenFile routine, select OpenFile from the Functions/Procedures
drop-down list on the IDLDE toolbar.

4. Add the following code between the PRO and END statements to handle the
event:

; If there is a file, draw it to the draw widget.
sFile = DIALOG_PICKFILE(FILTER='*.png')
IF(sFile NE "")THEN BEGIN

; Find the draw widget, which is named Draw.
wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw');
; Make sure something was found.
IF(wDraw GT 0)THEN BEGIN

; Make the draw widget the current, active window.
Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 183
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET,idDraw
; Read in the image.
im = READ_PNG(sFile, r, g, b)
; If TrueColor image, quantize image to pseudo-color:
IF (SIZE(im, /N_DIM) EQ 3) THEN $

im = COLOR_QUAN(im, 1, r, g, b)
; Size the image to fill the draw area.
im = CONGRID(im, !D.X_SIZE, !D.Y_SIZE)
; Handle TrueColor displays:
DEVICE, DECOMPOSED=0
; Load color table, if one exists:
IF (N_ELEMENTS(r) GT 0) THEN TVLCT, r, g, b
; Display the image.
TV, im
; Save the image in the uvalue of the top-level base.
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY

ENDIF
ENDIF

Note
In the added code, you used the FIND_BY_UNAME keyword to find the draw
widget using its name property. In this example, the widget name, “Draw”, is the
one you gave the widget in the IDL GUIBuilder Properties dialog. The widget name
is case-sensitive.

Now re-save example.pro to be sure that the changes are retained.

Handling the Exit Event

To add the code that causes the example application to close when the user chooses
Exit from the File menu, follow these steps:

1. Locate the OnExit procedure place holder, which looks like this:

pro OnExit, Event

end

2. Add the following statement between the PRO and END statements to handle
the destruction of the application:

WIDGET_CONTROL, Event.top, /DESTROY
Getting Started with IDL Creating an Example Application

184 Chapter 14: Using the IDL GUIBuilder
Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table
dialog when the user chooses Load Color Table from the Tools menu, follow these
steps:

1. Locate the OnColor routine place holder, which looks like this:

pro OnColor, Event

end

2. Add the following code between the PRO and END statements:

XLOADCT, /BLOCK
; Find the draw widget, which is named Draw:
wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw')
IF(wDraw GT 0) THEN BEGIN

; Make the draw widget the current, active window:
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET, idDraw
WIDGET_CONTROL,Event.top, GET_UVALUE=im, /NO_COPY
; Make sure the image exists:
IF (N_ELEMENTS(im) NE 0) THEN BEGIN
; Display the image:

TV, im
; Save the image in the uvalue of the top-level base:
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY

ENDIF
ENDIF

This procedure opens a dialog from which the user can select from a set of predefined
color tables. When the user clicks the name of a color table, it is loaded and the
displayed image changes appropriately.

Note
The XLOADCT color table dialog affects only 8-bit display devices.

Handling the Smooth Event

When the user selects Smooth from the Analyze menu, a smooth operation is
performed on the displayed image. The smooth operation displays a smoothed image
with a boxcar average of the specified width, which in the example code is 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the DoSmooth routine place holder, which looks like this:
Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 185
pro DoSmooth, Event

end

2. Add the following code between the PRO and END statements to handle the
smooth operation:

; Get the image stored in the uvalue of the top-level-base.
WIDGET_CONTROL, Event.top, GET_UVALUE=image, /NO_COPY
; Make sure the image exists.
IF(N_ELEMENTS(image) GT 0)THEN BEGIN

; Smooth the image.
image = SMOOTH(image, 5)
; Display the smoothed image.
TV, image
; Place the new image in the uvalue of the button widget.
WIDGET_CONTROL, Event.top, SET_UVALUE=image, /NO_COPY

ENDIF

3. From the File menu, choose Save, which saves all your changes to the
example_eventcb.pro file.

Compiling and Running the Example Application

To compile and run your example application, follow these steps:

1. Type example at the IDL> command prompt. This compiles and runs the
example application, opening the GUI interface that has been created.

2. Now open a PNG image to try out the new application. From the File menu
choose Open, locate a PNGfile, and click “Open”.

3. You will now see the image opened in your GUI window. To manipulate the
color schemes, click Tools/Load Color Table The following figure shows the
example application and the IDL color table dialog. You can also perform the
smooth procedure on the image.
Getting Started with IDL Creating an Example Application

186 Chapter 14: Using the IDL GUIBuilder
Figure 14-4: The example GUI application
Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 187
Widget Types

Here is a quick description of the widget types you can create using the IDL
GUIBuilder toolbar:

Widget Description

Base Creates a container for a group of widgets within a top-level
base container (which is contained in the IDL GUIBuilder
window).

Button Creates a push button. The easiest way to allow a user to interact
with your application is through a button click.

Radio Button Creates a toggle button that is always grouped within a base
container.

Checkbox Creates a checkbox, which you can use either as a single toggle
button to indicate a particular state is on or off or as a list of
choices from which the user can select none to all choices.

Text Creates a text widget.

Label Creates a label.

Horizontal and
Vertical Sliders

Creates a slider with a horizontal or vertical layout.

Droplist Creates a droplist widget, which you can use to present a
scrollable list of items for the user to select from.

Listbox Creates a list widget, which you can use to present a scrollable
list of items for the user to select from.

Draw Area Creates a draw area, which you can use to display graphics in
your application.

Table Creates a table widget, which you can use to display data in a
row and column format.

Tab Creates a tab widget on which different “pages” (base widgets
and their children) can be displayed by selecting the appropriate
tab.

Table 14-1: Widget Types
Getting Started with IDL Widget Types

188 Chapter 14: Using the IDL GUIBuilder
Note
The Select Cursor button returns the cursor to its standard state, and it indicates that
the cursor is in that state. After you click on another button and create the selected
widget, the cursor returns to the selection state.

Widget Properties

For each widget type, there is a set of attribute values and a set of event values you
can set using the IDL GUIBuilder Properties dialog. When you select a widget in the
IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated
to contain the properties for the selected widget. These properties include those
common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog (right click on the draw area, and
choose Properties. This action opens the Properties dialog for the draw area) the
attributes are set to default values and are arranged in the following order:

• The Name property.

• An alphabetical list of common and widget-specific properties, combined.

On the Events tab, the possible events for a widget are listed in alphabetical order,
with the common and the widget-specific events combined. By default, no event
values are set initially. When you enter a routine name for an event property, you are
responsible for making sure that event procedure exists. IDL does not validate the
existence of the specified routine.

Tree Creates a tree widget, which presents a hierarchical view that
can be used to organize a wide variety of data structures and
information.

Widget Description

Table 14-1: Widget Types
Widget Types Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 189
More Information on the IDL GUIBuilder

For more information on the IDL GUIBuilder, see the Building IDL Applications
manual.
Getting Started with IDL More Information on the IDL GUIBuilder

190 Chapter 14: Using the IDL GUIBuilder
More Information on the IDL GUIBuilder Getting Started with IDL

Chapter 15:

Where to Go
From Here
Using just a few examples, you’ve now gained a brief glimpse at the many and
powerful options that IDL offers you for data analysis, visualization, and cross-
platform application development. But the power of IDL has only begun and IDL
offers you many options to aid you in learning more and more about its incredible
functionality.
Getting Started with IDL 191

192 Chapter 15: Where to Go From Here
Learning More about IDL

A multitude of resources are made available to you to assist you as you learn the
many capabilities of IDL. IDL manuals are offered both printed and online (in PDF
version). IDL also includes an online help system directly accessible from the IDL
Development Environment.

IDL Documentation Set

If you have just purchased IDL, you will receive part of the documentation set
(depending upon which products you have purchased) in printed form with your
order. All IDL manuals are available in PDF form on your product CD-ROM. For
more information, see “Online Manuals” on page 194.

Installing and Licensing IDL 5.6

Installing and Licensing IDL 5.6 describes how to install and license IDL on your
platform. It provides information about the different types of licensing available for
IDL and how to manage licensing on your system.

Using IDL

Using IDL explains IDL from an interactive user’s point of view. It contains
information about the IDL environment, the structure of IDL, and how to use IDL to
analyze and visualize your data.

Building IDL Applications

Building IDL Applications explains how to use the IDL language to write programs -
from simple procedures to large, complex applications. It contains information on the
structure of the IDL language, programming techniques, and tools you can use to
create applications in IDL.

Image Processing in IDL

Image Processing in IDL introduces you to the full image processing power of IDL,
describing how to display, manipulate, and extract information from images. This
manual features both Direct Graphics and Object Graphics examples that will aid in
developing IDL applications that require image processing.
Learning More about IDL Getting Started with IDL

Chapter 15: Where to Go From Here 193
IDL Quick Reference

The IDL Quick Reference provides quick access to the following: IDL procedures
and functions (categorized functionally and alphabetically), objects, executive
commands, and statements.

IDL Reference Guide

The IDL Reference Guide contains detailed information about all of IDL’s
procedures, functions, objects, system variables, and other useful reference materials.
It also contains detailed information about IDL’s routines for dealing with Common
Data Format (CDF), Hierarchical Data Format (HDF), Earth Observing System
extensions to HDF (HDF-EOS), and Network Common Data Format (NetCDF) files.

External Development Guide

The External Development Guide explains how to use IDL to develop applications
that interact with programs written in other programming languages.

Obsolete IDL Features

Obsolete IDL Features describes routines that have become obsolete by
enhancements to the IDL language. While these routines continue to exist, RSI
recommends that you do not use routines that have become obsolete in new code.

IDL Master Index

The Master Index is a combined and comprehensive index covering all manuals in
the IDL documentation set.

Note
Additional documentation can be ordered from Research Systems by contacting
RSI Sales at (303) 786-9900 or by visiting www.ResearchSystems.com.

IDL DataMiner Guide

The IDL DataMiner Guide contains information on using IDL to interact with
databases using the Open Database Connectivity (ODBC) interface.
Getting Started with IDL Learning More about IDL

http://www.ResearchSystems.com

194 Chapter 15: Where to Go From Here
Online Manuals

All volumes of the IDL documentation set are also available in Adobe Acrobat
Portable Document Format (PDF). These PDF files are automatically installed on
your machine with IDL. Remember that in order to view these manuals, you will
need a copy of Adobe’s Acrobat Reader with Search software (version 3.0 or later). A
copy of Adobe Acrobat Reader is included on your product CD-ROM. For more
information on Adobe Acrobat Reader, visit their World Wide Web site at
www.adobe.com.

How to Access IDL Online Manuals

To access the IDL online manuals after you have installed IDL:

On Windows, select Start → Programs → Research Systems IDL 5.6 →
IDL Online Manuals & Tutorials.

On UNIX and Mac OS X, execute the following at the prompt:

idlman

The IDL online manuals can also be found in the info directory of your product CD-
ROM.

Navigation of the IDL Online Manuals

The online IDL manuals are fully hypertext linked for easy navigation. An Online
Guide (onlguide.pdf) file is also included which is your guide to the IDL
documentation set. It has links for all manuals in the documentation set as well as
links on how to get more information from Research Systems.

Searching within the Online Manual Set

The IDL online manuals are set up to search for any information you might need
within the IDL manual set. To search the IDL manual set, you can click on the
binocular/page button in the Acrobat Reader tool bar after you have opened any IDL
manual in the set including the Online Guide.
Learning More about IDL Getting Started with IDL

Chapter 15: Where to Go From Here 195
Online Help

IDL is equipped with extensive on-line help facilities that provide two kinds of
information: documentation of IDL procedures, functions, and keywords, and
information on the status of the IDL environment. There are several ways to access
these help facilities from within the IDL Development Environment.

The IDL Development Environment Help Menu

One way is to start Help by selecting “Contents” from the “Help” pull-down menu in
the IDL Development Environment. You can also search using the “Find Topic”
selection on the same menu.

The Question Mark

You can access the IDL Help by entering a question mark (?) at the IDL prompt. The
IDL Online Help window appears. The most current documentation on any aspect of
IDL is available through this command. Although the help window has buttons for
performing searches, you can also perform a keyword search from the command line
by entering “?” followed by a keyword for which you want to search. For example, to
search for topics related to contouring when starting the help system, you could enter:

? CONTOUR

IDL Help Outside of the IDL Development Environment

You may also access the IDL Help system outside of the IDL Development
Environment.

On UNIX and Mac OS X, execute the following at the prompt:

idlhelp

HELP Command

The HELP procedure gives information about the IDL session. Enter:

HELP

with no additional parameters to display an overview of the current IDL session
including one-line descriptions of all variables and the names of all compiled
procedures and functions. Enter:

HELP, variable

to display information about that variable’s type. Many keyword parameters can be
used with the HELP procedure to retrieve more specific information.
Getting Started with IDL Learning More about IDL

196 Chapter 15: Where to Go From Here
IDL Demo Applications and Examples

The IDL Demo Applications illustrate some of the many ways IDL can help visualize
data. The IDL Demo Applications are a series of programs written in the IDL
language that demonstrate different aspects of IDL. To Start the Demo Applications,
complete the following steps:

For Windows, by clicking the Windows Start button and selecting Start →
Programs → Research Systems IDL 5.6 → IDL Demo.

For UNIX and Mac OS X, enter the following at the UNIX prompt:

idldemo

Note
If you have already started IDL, you can simply type in DEMO at the IDL prompt.

IDL> DEMO

Another way to access the IDL Demo System is to use the “Run Demo” toolbar
button on the IDLDE toolbar. To use this feature simply click the button and the
dialog for running the demo will appear.

IDL also comes with many built-in examples such as source code and example data
files. These can be found in the RSI-DIR/examples where RSI-DIR is the
directory in which you have installed IDL.
IDL Demo Applications and Examples Getting Started with IDL

Chapter 15: Where to Go From Here 197
Contacting RSI

Address

Research Systems, Inc.
4990 Pearl East Circle
Boulder, CO 80301

Phone

(303) 786-9900
(303) 413-3920 (Technical support)

Fax

(303) 786-9909

E-mail

Sales inquiries: info@ResearchSystems.com
Technical support: support@ResearchSystems.com
Training information: training@ResearchSystems.com

World Wide Web

Visit Research Systems’ web site at: Visit Research Systems’ web site at
www.RSInc.com.
Getting Started with IDL Contacting RSI

http://www.RSInc.com
mailto:info@ResearchSystems.com
mailto:support@ResearchSystems.com
mailto:training@ResearchSystems.com

198 Chapter 15: Where to Go From Here
Contacting RSI Getting Started with IDL

Index

Symbols
$, continuation character, 144
&, multiple command character, 144

Numerics
2D plot, 51

A
abbreviating keywords, 115
Adobe Acrobat Portable Document Format

(PDF), 194
animation

wire mesh surface, 143
annotating

maps, 117
axes

turning off, 146
azimuthal equidistant map projection, 116

B
base widgets

using, 187
button widgets

using, 187
byte scaling, 64, 89

C
checkboxes

using, 187
Getting Started with IDL 199

200
code
IDL GUIBuilder generated, 181
modifying generated, 182

color tables
example, 184
loading, 88

colors
byte scaling, 89
contrast enhancement, 68
filling contours, 93
scaling, 64

Command Input Line
IDLDE for Motif, 18

Contents button, 195
contours, 91

filling, 93
levels, 92
3D perspective, 94
tickmarks, 93

contrast enhancement, 68
creating data, 51, 85
customizing routines, 96

D
data

irregularly-gridded, 130
data sets

creating, 51
plotting, 44

datasets
creating, 51, 85, 131

differentiated smoothing, 76
dismissing windows, 64
draw widgets

example application using, 179
using, 187

drawing latitude and longitude lines, 115
droplist widgets

using, 187

E
efficiency

vector and array operations, 169
elevation levels. contours, 92
events

handling in IDL GUIBuilder code, 182

F
files

IDL GUIBuilder
generated, 181

modifying generated, 182
reading image data, 63

filling contours, 93
filtering

frequency domain, 55
filtering techniques, 55
Fourier transform filtering, 55
frequency domain filtering, 55

G
globe, drawing, 115
graphics

window resizing, 67
windows, dismissing, 64

gridding
latitude and longitude lines, 115
quintic, 135

H
help on IDL, 195

I
IDL

Code Profiler, 159
Index Getting Started with IDL

201
getting help, 195
IDL Development Environment

Layout, 17
IDL GUIBuilder

base widgets, using, 187
button widgets, using, 187
checkbox widgets, using, 187
color table example, 184
compiling and running example, 185
creating draw area, example, 179
defining menus, example, 177
draw widgets, using, 187
droplists, using, 187
generating code, 181
horizontal slider, using, 187
label widgets, using, 187
listbox widgets, using, 187
modifying code, example, 182
radio button widgets, using, 187
smooth example, 184
starting, 177
table widgets, using, 187
test mode, 181
text widgets, using, 187
toolbar, 176
tools, 176
vertical slider, using, 187
writing event-handling code, 182

images
contrast enhancement, 68
displaying, 64, 64
opening, 63
reading, 63, 63
rotating, 79
sharpening, 74
smoothing, 74

input and output, 24
interpolation

linear, 135
quintic, 135

irregularly-gridded data, 130

iso-surfaces, 10

K
keywords

abbreviating, 115

L
label widgets

using, 187
latitude lines, 115
levels, contour, 92
lines

drawing latitude and longitude, 115
horizon, 115

listbox widgets
using, 187

LIVE_PLOT
using, 46

LIVE_PLOT procedure, 46
longitude lines, 115

M
mapping, 112

annotations, 117
grid of latitude and longitude lines, 115
horizon line, 115
limiting region mapped, 116
projection

azimuthal equidistant, 116
orthographic, 115

multiple plot displays, 58

O
opening

image files, 63
Getting Started with IDL Index

202
orthographic map projection, 115
Output Log

IDLDE for Motif, 19
overplotting, 93

P
PDF files, 194
performance

analyzing, 159
pixel

brightness profile, 80
pixels

scaling, 71
plotting

annotating maps, 117
contours, 91
displaying multiple plots, 58
irregularly-gridded data, 130
other capabilities, 45
overplotting, 93
simple, 41
surfaces, 84, 86, 152
symbols, 132
text size, 88
titles, 54, 88

plotting with data sets, 44
printing a plot, 43
profiling, 159
projections, map

azimuthal equidistant, 116
orthographic, 115

projects
overview, 18, 160

Q
quintic interpolation, 135
quitting IDL, 20

R
radio button widgets

using, 187
reading

images, 63
reading binary data, 31
reading images, 36
real-world test data, 52
resizing

graphics windows, 67
rotating

images, 79
routines

customizing, 96

S
saving a template, 35
scaling pixels, 71
scientific data formats, 25
sharpening images, 74
signal processing

and IDL, 50
SIN function, 51
sinewave function, 51
slices

making, 106
slider widgets

using, 187
smoothing

example, 184
smoothing images, 74
standard

image file formats, 25
Status Bar

IDLDE for Motif, 19
surfaces

constant-density, 10
displaying, 108
iso-surfaces, 10
Index Getting Started with IDL

203
plotting, 84, 86, 152
wire mesh animation, 143

T
table widgets

using, 187
test data, 52
test mode, IDL GUIBuilder, 181
text

size, 88
text widgets

using, 187
three-dimensional

contour plot, 94
surfaces, 86

thresholding, 68
toolbars

IDL GUIBuilder, 176
IDLDE for Windows, 17

tutorials, 12

U
unsharp masking, 75

V
Variable Watch Window, 158
variables

displaying current, 158

W
widgets

bases, using, 187
buttons, using, 187
checkboxes, using, 187
creating in IDL GUIBuilder, 176
draw, using, 187
droplists, using, 187
labels, using, 187
listbox, using, 187
radio buttons, using, 187
slider, using, 187
table, using, 187
text, using, 187

windows
deleting, 148
dismissing, 64
resizing, 67

wire mesh surface
animation, 143

writing binary data, 31
writing images, 36
Getting Started with IDL Index

204
Index Getting Started with IDL

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Getting Started with IDL: Contents
	The Power of IDL
	Using this Manual

	The IDL Development Environment
	IDL’s Development Environment
	Starting IDL
	The IDL Interfaces
	The IDL Development Environment Layout
	Menu Bar
	Tool Bar
	Project Window
	Multiple Document Panel
	Command Line
	Output Log
	Variable Watch Window
	Status Bar

	Quitting IDL
	More Information on the IDLDE

	Reading and �Writing Data
	IDL and Reading and Writing Data
	IDL Supported Formats
	Image Formats
	Scientific Data Formats
	Other Formats

	Importing Data from an ASCII File
	Reading and Writing Binary Data
	Saving a Template
	Reading and Writing Images
	More Information on IDL and Input/Output

	2-D Plotting
	IDL and 2-D Plotting
	Simple Plotting
	Using OPLOT
	Printing a Plot

	Plotting with Data Sets
	Other Plotting Capabilities
	Using LIVE_PLOT
	More Information on 2-D Plotting

	Signal Processing
	IDL and Signal Processing
	Creating a Data Set
	Signal Processing with SMOOTH
	Frequency Domain Filtering
	Displaying the Results
	More Information on Signal Processing

	Image Processing
	IDL and Image Processing
	Reading an Image
	Displaying an Image
	Resizing an Image
	Resizing a Graphics Window
	Contrast Enhancement
	Thresholding
	Scaling Pixel Values

	Smoothing and Sharpening
	Unsharp Masking
	Sharpening Images with Differentiation
	Loading Different Color Tables

	Other Image Manipulations
	Rotating an Image

	Extracting Profiles
	Using LIVE_IMAGE
	More Information on Image Processing

	Surface and Contour Plotting
	IDL and Surface and Contour Plotting
	Reading a Dataset to Plot
	Displaying a Surface
	Displaying a Shaded Surface
	Displaying a Contour
	Plotting with SHOW3
	Using LIVE_SURFACE for Plotting
	More Information on 3-D Plotting

	Volume Visualization
	IDL and Volume Visualization
	Reading in a Dataset for Visualization
	3-D Transformations
	Visualizing an Iso-Surface
	Making Slices with the IDL Slicer
	Displaying a Surface with the Slicer
	Dismiss the Slicer and Volume Windows

	More Information on Volume Visualization

	Mapping
	IDL and Mapping
	Drawing Map Projections
	Drawing an Orthographic Projection
	Plotting a Portion of the Globe
	Plotting Data on Maps
	Reading Latitudes and Longitudes
	Plotting Contours Over Maps
	Warping Images to Maps
	More Information on Mapping

	Plotting Irregularly- Gridded Data
	IDL and Plotting Irregularly-Gridded Data
	Creating a Dataset
	The TRIANGULATE Procedure
	Plotting the Results with TRIGRID
	More Information on Gridding

	Animation
	IDL and Animation
	Animating a Series of Images
	Displaying an Animation as a Wire Mesh
	Animation with XINTERANIMATE
	Cleaning Up the Animation Windows
	More Information on Animation

	Programming in IDL
	IDL and Programming
	Programming Capabilities in the IDLDE
	Built-In Editor
	Chromacoded editor

	Types of IDL Programs
	Main Program
	Procedure
	Function

	Compound Statements
	Conditional Statements
	Loop Statements
	Jump Statements

	Executing a Simple IDL Example Program
	Saving, Compiling and Running your Program

	Debugging Tools in IDL
	Breakpoints
	Variable Watch window
	The IDL Code Profiler

	Using IDL Projects
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Building Distributions
	Exporting Your Applications

	More Information on IDL Programming

	Manipulating Data
	IDL and Manipulating Data
	IDL Array Routines
	Array Creation Routines
	Array Manipulation Routines
	Array and Image Processing Routines

	Array Processing Capabilities
	Example— Avoiding IF Statements by Summing Elements
	Example— Avoiding IF Statements by Using Array Operators and the WHERE Function
	Example— Using Vector and Array Operations

	More Information on Manipulating Data

	Using the IDL GUIBuilder
	What is the IDL GUIBuilder?
	Using the IDL GUIBuilder

	IDL GUIBuilder Tools
	Using the IDL GUIBuilder Toolbar

	Creating an Example Application
	Defining Menus for the Top-Level Base
	Running the Application in Test Mode
	Generating the IDL Code
	Handling the Open File Event
	Handling the Exit Event
	Handling the Load Color Table Event
	Handling the Smooth Event
	Compiling and Running the Example Application

	Widget Types
	Widget Properties

	More Information on the IDL GUIBuilder

	Where to Go From�Here
	Learning More about IDL
	IDL Documentation Set
	Installing and Licensing IDL 5.6
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	IDL Master Index
	IDL DataMiner Guide

	Online Manuals
	How to Access IDL Online Manuals
	Navigation of the IDL Online Manuals
	Searching within the Online Manual Set

	Online Help
	The IDL Development Environment Help Menu
	The Question Mark
	IDL Help Outside of the IDL Development Environment
	HELP Command

	IDL Demo Applications and Examples
	Contacting RSI
	Address
	Phone
	Fax
	E-mail
	World Wide Web

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

